Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E
tự vẽ hình nhé
a)tam giác ABC cân tại A(gt)
=>góc ABC=góc ACB
Xét tam giác BEP có: E thuộc đường trung trực của BP
=>BE=EP
=>tam giác BEP cân tại E
=>góc EBP=góc EPB,mà góc EBP=góc ACB (do góc ABC=góc ACB(cmt))
=>góc EPB=góc ACN,mà chúng ở vị trí đồng vị
=>EP//CF hay EP//AF
Xét tam giác CPF có: F thuộc đường trung trực CP=>CF=PF
=>tam giác CPF cân tại F
=>góc FPC=góc FCP,mà ABC=góc FCP(do góc ABC=góc ACB(cmt))
=>góc FPC=góc ABC,mà chúng ở vị trí đồng vị
=>AB//PF hay AE//PF
Xét tứ giác AEPF có: EP//AF (cmt); AE//PF(cmt)
=>tứ giác AEPF là hình bình hành (DHNB.......)
b, AEPF là hình bình hành (cmt)
=>AF=PE
Lại có CF=PF(cmt)
=>PE + PF = AF + CF = AC không phụ thuộc vào vị trí của điểm P trên BC
x2>=0 Dấu "=" chỉ xảy ra khi x=0
-x2 =< 0 Dấu "=" chỉ xảy ra khi x=0
*) bđt Cô-si
cho a,b không âm ta có \(\frac{a+b}{2}\le\sqrt{ab}\)(*) dấu "=" xảy ra khi a=b
tổng quát: cho n số không âm a1;a2;....;an
ta có \(\frac{a_1+a_2+....+a_n}{n}\ge\sqrt[n]{a_1\cdot a_2......a_n}\)dấu "=" xảy ra khi a1=a2=....=an
*) bđt Bunhiacopxki
cho bốn số a,b,c,d ta luôn có (ab+cd)2 =< (a2+c2)(b2+d2) dấu "=" xảy ra <=> ad=bc
tổng quát cho 2n số a1,a2,...;an; b1,b2,....,bn
ta luôn có (a1b1+a2b2+....+anbn)2 =< (a12+a22+....+an2).(b12+....+bn2)
dấu "=" xảy ra \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=....=\frac{a_n}{b_n}\)
quy ước nếu mẫu bằng 0 thì tử bằng 0
(1) 2(a2+b2) >= (a+b)2 >= 4ab
(2) 3(a2+b2+c2) >= (a+b+c)2 >= 3(ab+bc+ca)
(3) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
(4) \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
gọi E là giao điểm của Ah và MB. xét tam giác KAH và tam giác KMB có
\(\widehat{AKH}=\widehat{MKB}\left(=90^0\right)\)
\(\widehat{KAM}=\widehat{KMB}\)(2 góc cùng phụ góc AMN)
do đó tam giác KAH ~ tam giác KMB => \(\frac{KH}{KB}=\frac{AK}{BM}\Rightarrow KH\cdot KM=AK\cdot AB\)
áp dụng bđt Cô-si cho 2 số dương ta có:
\(\sqrt{AK\cdot AB}\le\frac{AK+AB}{2}\Leftrightarrow AK\cdot AB\le\frac{AB^2}{4}\)
do đó \(KH\cdot KM\le\frac{AB^2}{4};\frac{AB^2}{4}\)không đổi. dấu "=" xảy ra <=> AK=AB
vậy giá trị lớn nhất của KH.KM là \(\frac{AB^2}{4}\)khi AK=AB
TRẢ LỜI GIÚP MÌNH VỚI MINH ĐANG RẤT GẤP CÓ AI HỌC THẦY CẢNH KO LỚP 7 SÁCH HỌC TỐT TÙ BÀI 96 ĐẾN BAIF113 HÌNH