K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Ta có : M = 2 + 22 + 23 + 24 + .... + 22017 + 22018 

=> 2M = 22 + 23 + 24 + 25 + .... + 22018 + 22019 

=> 2M - M = ( 22 + 23 + 24 + 25 + .... + 22018 + 22019 ) - (2 + 22 + 23 + 24 + .... + 22017 + 22018 )

=> M = 22019 - 2

b) Lại có M = 2 + 22 + 23 + 24 + .... + 22017 + 22018 

= (2 + 22) + (23 + 24) + .... + (22017 + 22018)

= 2(2 + 1) + 23(2 + 1) + ... + 22017(2 + 1)

= (2 + 1)(2 + 23 + .... + 22017)

= 3(2 + 23 + .... + 22017

=> M \(⋮\)3 (ĐPCM)

15 tháng 1 2022

cảm ơn bn Xyz nha HT

25 tháng 1 2023

a)đề \(\Rightarrow2M=2^2+2^3+2^4+...+2^{2019} \Rightarrow M=2^{2019}-2\)
b)đề \(\Rightarrow M=(2+2^2)+(2^3+2^4)+...+(2^{2017}+2^{2018})\)
          \(\Rightarrow M=2.3+3.\left(2^3\right)+3.2^4+...+3.2^{2017}\)
         \(\Rightarrow M⋮3\left(đpcm\right)\)

a) \(M=2+2^2+2^3+...+2^{2017}+2^{2018}\)

\(2M=2^2+2^3+2^4+...+2^{2018}+2^{2019}\)

\(2M-M=2^{2019}+2^{2018}-2^{2018}+2^{2017}-2^{2017}+...+2^2-2^2-2\)

\(M=2^{2019}-2\)

b) Từ câu a); hiển nhiên là 2 chia 3 dư 2. 

Xét \(2^2\div3\); ta được 4 : 3 dư 1.

Xét \(2^3\div3\); ta được 8 : 3 dư 2.

Xét \(2^4\div3\); ta được 16 : 3 dư 1.

...

Dãy số tìm được khi lấy 2n chia cho 3 ( với n > 0 ) là 2; 1; 2; 1; ...

Mà 2019 : 2 dư 1 nên số dư của \(2^{2019}\div3\) là 2.

Vậy \(2^{2019}-2\equiv\left(3-3\right)mod3\equiv0mod3\)

Hoặc M chia hết cho 3 ( đpcm )

24 tháng 7 2021

                                             giải

a, M =2+2^2+2^3+...+2^2017+2^2018

2*M=2^2+2^3+...+2^2018+2^2019

2*M-M=(2^2+2^3+...=2^2019)-(2+2^2+2^3+...+2^2018)

2*M=2^2019+2

M=(2^2019+2)/2

16 tháng 12 2021

\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)

16 tháng 12 2021

Thank youvui

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

M=2+2^3+2^4+....+2^20 (tổng M có 20 số hạng)

M=(2+2^2+2^3+2^4)+....+(2^17+2^18+2^19+2^20) (tổng M có 20:4=5 nhóm)

M=2*((1+2+2^2+2^3)+...+2^17*(1+2+2^2+2^3)

M=2*15+........+2^17*15

M=15*(2+.+2^17)

VÌ 15 chia hết cho 5 .=>15*(2+...+2617) cũng chia hết cho 5

=>M chia hết cho 5

Vậy M chia hết cho 5

11 tháng 5 2016

Ta có \(A=4+2^2+2^3+...+2^{2016}\)

        \(A=2^2+2^2+2^3+...+2^{2016}\)

Ta có \(2^2+2^2=2^2.2=2^3\)

         \(2^3+2^3=2^3.2=2^4\) 

         ..........................................

Tương tự với các số hạng còn lại ta được 

     \(A=4+2^2+2^3+...+2^{2016}\)

    \(A=2^{2016}+2^{2016}=2^{2016}.2=2^{2017}\)chia hết cho \(2^{2017}\)

      Vậy A chia hết cho \(2^{2017}\)

11 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath