Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin phép được sủa đề một chút nhé :)
\(\left\{{}\begin{matrix}x+y=z=a\\x^2+y^2+z^2=b\\a^2=b+4034\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\\x^2+y^2+z^2=b\\a^2-b=4034\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b=2\left(xy+yz+zx\right)\\a^2-b=4034\end{matrix}\right.\Leftrightarrow xy+yz+zx=2017\)
\(M=x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(z+x\right)}}\)
\(=2\left(xy+yz+zx\right)=4034\)
a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:
\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)
\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)
\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)
\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)
P/s: Không chắc cho lắm ạ.
Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,
Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6
Help meeee, please!
thanks nhiều
3) áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=>\(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=>\(3xyz=xy+yz+zx\)
mặt khác ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx=1\)
<=>\(1+2xy+2yz+2zx=1\)
<=> \(xy+yz+zx=0\)
do đó 3xyz=0<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
lần lượt thay x;y;z vào hệ ta có các cặp nghiệm (x;y;z)=(0;0;1),(0;1;0),(1;0;0)
do đó x^2017+y^2017+z^2017=1
Lời giải:
Vì \(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\leq 1\Rightarrow -1\leq x,y,z\leq 1\)
Lại có:
\(\left\{\begin{matrix} x^2+y^2+z^2=1\\ x^3+y^3+z^3=1\end{matrix}\right.\Rightarrow x^3+y^3+z^3-x^2-y^2-z^2=0\)
\(\Rightarrow x^2(x-1)+y^2(y-1)+z^2(z-1)=0\)
Vì \(\left\{\begin{matrix} x^2\geq 0\\ x-1\leq 0\end{matrix}\right.\Rightarrow x^2(x-1)\leq 0\)
Hoàn toàn tt: \(y^2(y-1)\leq 0; z^2(z-1)\leq 0\)
Do đó: \(x^2(x-1)+y^2(y-1)+z^2(z-1)\leq 0\)
Dấu bằng xảy ra khi \(x^2(x-1)=y^2(y-1)=z^2(z-1)=0\)
Kết hợp với \(x+y+z=1\Rightarrow (x,y,z)=(1,0,0)\) hoặc hoán vị
Do đó:
\(P=x^{2017}+y^{2017}+z^{2017}=1\)