Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp
Tính diện tích tam giác đáy và chiều cao lăng trụ suy ra thể tích theo công thức V=Bh .
Cách giải:
Đáp án A
Dễ dàng tính được các cạnh của tứ diện CA′B′C′:
A ' C = A ' C ' = CC ' = B ' C ' = A ' B ' = a .
Đáp án C
Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘ suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.
Ta có: A ' H = HA tan 60 ∘ = a 3 3 . 3 = a
⇒ V A ' A B D = 1 3 A ' H . S A B C = a 3 3 12
Do đó V A B C D . A ' B ' C ' D ' = 3 V A ' . A B C D = 6 V A ' A B D = a 3 3 2 .
Kẻ
Gọi độ dài đoạn AD là x
∆ A D A ' vuông tại A,
Lại có:
Chọn: C
Đáp án D
S A B C = 1 2 a .2 a = a 2 ⇒ d = V S = 2 a 3 a 2 = 2 a
Đáp án A