Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Đáp án A
Ta có: A ' A = A B tan 30 ∘ = 3 a . 1 3 = a 3 ; S A B C = 1 2 3 a 2 = 9 a 2 2
Thể tích khối chóp A’.ABC là V = 1 3 A ' A . S A B C = 1 3 a 3 . 9 a 2 2 = 3 3 a 3 2 .
Chọn C.
Phương pháp:
Sử dụng công thức tính thể tích khối trụ có chiều cao h và bán kính r là V = π τ 2 h .
Cách giải:
Đáp án B
Chiều cao của khối trụ là A D = 5 a 2 − 4 a 2 = 3 a . Thể tích của khối trụ là: V = π R 2 h = π 4 a 2 2 .3 a = 12 π a 3
Đáp án C.
Ta có
V A B C D = 1 6 A B . C D . d A B , C D = sin A B , C D ⏜ ⇒ 30 = 1 6 6 2 . h . sin 30 ° ⇔ h = 10 c m ⇒ V T = πr 2 h = π . 3 2 . 10 = 90 π cm 3