Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm hình vuông ABCD,M là trung điểm của SA
Mặt phẳng trung trực của đoạn thẳng SA cắt SO tại I
Điểm I là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD bán kính R=IS
Đáp án C
Phương pháp
Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là:
Đáp án B.
Chiều cao khối chóp:
h = a 2 2 . tan 30 ° = a 6 6 .
Do đó
V = 1 3 a 2 . h = 1 3 a 2 . a 6 6 = 6 a 3 18 .
Đáp án C
Ta có: 2 O D 2 = a 2 ⇒ O D = a 2
⇒ S O = O D tan 60 ∘ = a 2 . 3 = a 3 2
Gọi H là hình chiếu của N lên (ABCD) là trung điểm của OC.
Ta có: N H = S O 2 = a 6 4 ; S M B C = S A B C D = a 2
V N . B C M = 1 3 N H . S M B C = 1 3 . a 6 4 . a 2 = a 3 6 12
Ta có:
M D D C . C S C N . N P P M = 1 ⇔ 1.2. N P P M = 1 ⇔ N P P M = 1 2 ⇒ P M M N = 2 3
Ta có: V M . D P Q V M . B C N = P M M N . M D M C . M Q M B = 2 3 . 1 2 . 1 2 = 1 6
⇒ V N p Q D C A = 5 6 V N . B C M = 5 6 . a 3 6 12 = 5 a 3 6 72
Gọi H là trọng tâm tam giác ABC. Vì S.ABC là tứ diện đều cạnh a nên S H ⊥ A B C hay S H ⊥ A B C D v à S A = S B = S C = A C = B C = a
Gọi O là giao điểm hai đường chéo hình thoi ABCD thì B H = 2 3 B O
Vì ABC đều có BO là trung tuyến nên \ B O = a 3 2
Xét tam giác SBH vuông tại H ta có
Diện tích hình thoi ABCD là
Thể tích khối chóp S.ABCD là
.
Chọn B.