K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1

Gọi G là trọng tâm đáy \(\Rightarrow SG\perp\left(ABC\right)\)

Gọi M là trung điểm BC \(\Rightarrow AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Theo tính chất trọng tâm tam giác: \(AG=\dfrac{2}{3}AM=\dfrac{a\sqrt{3}}{3}\)

Pitago tam giác vuông SAG: 

\(SG=\sqrt{SA^2-AG^2}=\sqrt{b^2-\dfrac{a^2}{3}}\)

\(\Rightarrow V=\dfrac{1}{3}SG.S_{ABC}=\dfrac{1}{3}\sqrt{b^2-\dfrac{a^2}{3}}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{12}.\sqrt{b^2-\dfrac{a^2}{4}}\)

Kẻ SG vuông góc (ABC)

S.ABC là khối chóp đều

=>ΔABC đều

=>G là trọng tâm, là trực tâm của ΔABC

Gọi giao của AG với BC là D

=>D là trung điểm của BC

ΔABC đều có AD là trung tuyến

nên \(AD=\dfrac{a\sqrt{3}}{2}\)

=>\(AG=\dfrac{a\sqrt{3}}{2}\cdot\dfrac{2}{3}=\dfrac{a\sqrt{3}}{3}\)

ΔSAG vuông tại G nên \(SG=\sqrt{SA^2-AG^2}=\sqrt{b^2-\dfrac{1}{3}a^2}\)

\(V_{S.ABC}=\dfrac{1}{3}\cdot S_{ABC}\cdot SG=\dfrac{1}{3}\cdot\sqrt{b^2-\dfrac{1}{3}a^2}\cdot\dfrac{a^2\sqrt{3}}{4}\)

\(=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{\dfrac{3b^2-a^2}{3}}\)

Thể tích khối tứ diện đều có cạnh bằng a là:

\(V=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a^3\sqrt{2}}{12}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác SAO vuông tại O có

\(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{2}}  = \frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}\)

\({S_{ABCD}} = {a^2}\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}.{a^2} = \frac{{{a^2}\sqrt {4{b^2} - 2{a^2}} }}{6}\)

26 tháng 2 2017

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)

Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)

\( \Rightarrow \) O là hình chiếu của S trên (ABCD)

C là hình chiếu của C trên (ABCD)

\( \Rightarrow \) OC là hình chiếu của SC trên (ABCD)

\( \Rightarrow \) (SC, (ABCD)) = (SC, OC) \( = \widehat {SCO}\)

Mà cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)

\( \Rightarrow \widehat {SCO} = {60^0}\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{6^2} + {6^2}}  = 6\sqrt 2 \left( {cm} \right)\)

\( \Rightarrow OC = \frac{{AC}}{2} = \frac{{6\sqrt 2 }}{2} = 3\sqrt 2 \left( {cm} \right)\)

Xét tam giác SOC vuông tại O có

\(\tan \widehat {SCO} = \frac{{SO}}{{OC}} \Rightarrow SO = 6\sqrt 2 .\tan {60^0} = 6\sqrt 6 \left( {cm} \right)\)

\({S_{ABCD}} = {6^2} = 36\left( {c{m^2}} \right)\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.6\sqrt 6 .36 = 72\sqrt 6 \left( {c{m^3}} \right)\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

b)

Trong (ABCD) kẻ \(OE \bot CD\)

\(\begin{array}{l}SO \bot CD\left( {SO \bot \left( {ABCD} \right)} \right)\\ \Rightarrow CD \bot \left( {SOE} \right),SE \subset \left( {SOE} \right) \Rightarrow CD \bot SE,OE \bot CD,\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\ \Rightarrow \left( {\left( {SCD} \right),\left( {ABCD} \right)} \right) = \left( {SE,OE} \right) = \widehat {SEO}\end{array}\)

Mà mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)

\( \Rightarrow \widehat {SEO} = {45^0}\)

Ta có \(\left. \begin{array}{l}OE \bot CD\\AD \bot CD\end{array} \right\} \Rightarrow OE//AD\) mà O là trung điểm AC nên OE là đường trung bình tam giác ACD.

\( \Rightarrow OE = \frac{{AD}}{2} = \frac{6}{2} = 3\left( {cm} \right)\)

Xét tam giác SOE vuông tại O có

\(\tan \widehat {SEO} = \frac{{SO}}{{OE}} \Rightarrow SO = 3.\tan {45^0} = 3\left( {cm} \right)\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.3.36 = 36\left( {c{m^3}} \right)\)

1 tháng 8 2018

Đáp án A

Gọi H là tâm của tam giác đều ABC => SH ⊥ (ABC)

(SA;(ABC))

18 tháng 10 2017

17 tháng 2 2017

Đáp án B

Ta có: 

Khi đó: 

Suy ra: 

29 tháng 4 2019

7 tháng 2 2019