\(\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{c+b+d}+\frac{d}{c+a+d}\)

với a,b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

\(K=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\)

Ta có : \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d};\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}\)

\(\frac{c}{c+b+d}< \frac{a+c}{a+b+c+d};\frac{d}{c+a+d}< \frac{b+d}{a+b+c+d}\)

\(\Rightarrow K=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{c+b+d}+\frac{d}{a+c+d}< \frac{a+d}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+a}{a+b+c+d}+\frac{d+b}{a+b+c+d}=\frac{1}{2}\)

\(\Rightarrow K^{10}< \left(\frac{1}{2}\right)^{10}=\frac{1}{2^{10}}< 1< 2020\)

Vậy ....

15 tháng 2 2020

Đặt  \(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

Ta có: \(\frac{a}{a+b+c}< \frac{a}{a+c}\)

\(\frac{b}{b+c+d}< \frac{b}{b+d}\)

\(\frac{c}{c+d+a}< \frac{c}{a+c}\)

\(\frac{d}{d+a+b}< \frac{d}{d+b}\)

\(\Rightarrow S< \left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{d+b}\right)\)

\(\Rightarrow S< 2\left(1\right)\)

Lại có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{b+c+a+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow S>1\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

15 tháng 2 2020

nhanh the

1 tháng 10 2018

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\left(1\right)\)

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{d}{c}< \frac{b+d}{a+c}\)

\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)

Từ (1) và (2) ,suy ra đpcm

28 tháng 8 2018

ai làm đk mình k cho

28 tháng 8 2018

Ta có:  a < b     =>    2a < a + b

           c < d      =>    2c < c + d

           m < n     =>    2m < m +n

suy ra:    2 ( a + c + m)  < a + b + c + d + m + n

=>   \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

28 tháng 8 2019

\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)

28 tháng 6 2021

\(\text{Ta có:}\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)

\(\Rightarrow\frac{ad}{bc}< \frac{cd}{dc}\)

\(\Rightarrow\frac{ad}{bc}< 1\)

\(\Rightarrow ad< 1.bc\)

\(\Rightarrow ad< bc\)

\(\cdot\text{Từ }ad< bc\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\cdot\text{Từ }ad< bc\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

\(\text{Từ (1) và (2)}\Rightarrow\frac{a}{c}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

5 tháng 11 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

5 tháng 11 2016

mk cũng định làm thế nhưng ko rảnh