Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x+5-x=2m+9\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=2m+4\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=5-m-2\end{matrix}\right.\)
Gọi A=xy+x-1, ta có: \(A=\left(m+2\right)\left(5-m-2\right)+m+2-1\)
\(A=\left(m+2\right)\left(3-m\right)+m+1\)
\(A=-m^2+m+6+m+1\)
\(A=-m^2+2m+7=-\left(m-1\right)^2+8\)
\(A_{max}=7\Leftrightarrow m=1\) Khi đó x=3, y=2
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Vì \(\dfrac{2}{1}\ne\dfrac{-1}{1}=-1\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}2x-y=3m-7\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=3m-7+1=3m-6\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m-2\\y=1-m+2=-m+3\end{matrix}\right.\)
Để x,y dương thì \(\left\{{}\begin{matrix}m-2>0\\-m+3>0\end{matrix}\right.\)
=>2<m<3
\(P=x-y-xy-2m\)
\(=m-2-\left(-m+3\right)-\left(m-2\right)\left(-m+3\right)-2m\)
\(=m-2+m-3+\left(m-2\right)\left(m-3\right)-2m\)
\(=m^2-5m+6-5=m^2-5m+1\)
\(=m^2-5m+\dfrac{25}{4}-\dfrac{21}{4}=\left(m-\dfrac{5}{2}\right)^2-\dfrac{21}{4}>=-\dfrac{21}{4}\forall m\)
Dấu '=' xảy ra khi m=5/2(nhận)
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)
\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)