Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a,b thì mình làm được còn câu c,d thì mình chưa làm ra. Chân thành xin lỗi
a) có \(\widehat{BDC}=45^0\)(ABCD là hình vuông, BD là đường chéo)
\(\widehat{DKN}\left(hay\widehat{DKH}\right)=45^0\)(CHIK là hình vuông và KH là đường chéo)
\(\Rightarrow\widehat{BDC}+\widehat{DKN}=45^0+45^0=90^0\)
\(\Rightarrow\Delta DKN\)vuông tại N
\(\Rightarrow KN\perp DN\)
mà \(BC\perp DK\)
KN và BC cắt nhau tại H
suy ra H là trực tâm của tam giác BDK
nên \(DH\perp BK\)
b) Xét \(\Delta DMB\&\Delta KNB\)
có \(\widehat{DMB}=\widehat{KNB}\)=900
\(\widehat{DBK}chung\)
\(\Rightarrow\Delta DMB\) \(\Delta KNB\)(g-g)
\(\Rightarrow\frac{MB}{NB}=\frac{BD}{BK}\)
từ tỉ số trên ta đễ chứng minh \(\Delta BMN\)\(\Delta BDK\)
cm tương tự ta có \(\Delta CMK\)\(\Delta BDK\)
\(\Rightarrow\Delta BMN\)\(\Delta CMK\)
\(\Rightarrow\widehat{BMN}=\widehat{CMK}\)
lại có \(\hept{\begin{cases}\widehat{BMN}+\widehat{DMN}=90^0\\\widehat{CMK}+\widehat{DMC}=90^0\end{cases}}\)(\(DM\perp BK\))
\(\Rightarrow\widehat{DMN}=\widehat{DMC}\)
nên MD là phân giác của \(\widehat{NMC}\)
Bài 2
A/ \(x^2-2xy+y^2-4x+4y-5\)
\(=\left(x^2-2xy+y^2\right)-\left(4x-4y\right)-5\)
\(=\left(x-y\right)^2-4\left(x-y\right)-5\)
\(=\left(x-y\right)\left(x-y-4\right)-5\)
b/ trên máy tính đâu có đặt cột dọc được :v chịu khó tính nháp là ra xD
Bài 3
1/a \(\left(x^2-4x\right)^2+2\left(x-2\right)^2=4^3.\)
\(\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=64\)
Cho \(x^2-4x\) là S
\(\Rightarrow S^2+2\left(S+4\right)=64\)
\(\Rightarrow S^2+2S+8=64\)
\(\Rightarrow S^2+2S=64-8\)
\(\Rightarrow S^2+2S=56\)
Tính ko ra:v đề có sai ko?
2/ \(2x^2+3y^2+4x=19\)
\(\Rightarrow2x^2+4x=19-3y^2\)
\(\Rightarrow2x^2+4x=21-2-3y^2\)
\(\Rightarrow2x^2+4x+2=21-3y^2\)
\(\Rightarrow2\left(x^2+2x+1\right)=21-3y^2\)
\(\Rightarrow2\left(x+1\right)^2=21-3y^2\)
\(\Rightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)
Từ đây xét tiếp để ra kq :v
Ta có: \(\widehat{BDC}=\widehat{DKF}=45\Rightarrow\widehat{DFK}=90\) Gọi F là giao điểm HK và BD
\(\Rightarrow HK\perp BD\)
Tam giác DBK có: KF,BC là các đường cao cắt tại H
\(\Rightarrow DH\perp BK\)
Tham khảo các bài toán khó trên h.vn nhé bạn hoặc
Câu hỏi tương tự:https://olm.vn/hoi-dap/detail/217354191899.html
~Hok tốt~