K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

bạn ơi hình như câu b là be ag và cf đòng quy mừ

26 tháng 11 2018

mình xin lỗi vì không giải thích cặn kẽ 

bạn chứng minh như sau

a)Có:EFDG là hình chữ nhật 

=> ED = FG

rồi chứng minh ED =BE bằng cách chứng minh tam giác dea = tam giác bea

=> FG = BE

mình không biết làm vế sau 

b) bạn hãy cho giao của AG VÀ FC  là điểm M (phải là AG và FC)

nối AG thì bạn thấy đi qua M

Đi chứng minh M là trực tâm của tam giác BFG thì bạn sẽ có được ĐPCM

cách chứng minh

bạn chứng minh AG vuông góc với FB bằng cách sau :

bạn chứng minh tam giác ADG = tam giác BFA 

=> góc ABF =  góc DAG

Gọi giao của BF và AG là H

=> BFA +ABF = BFA + DAG

=> 180 độ - FAB= 180 độ - AHF

=>FAB = AHF

=> AHF =90 

=> AG  vuông góc BF 

CF vuông góc với BG cũng chứng minh tường tự 

=> M là trực tậm 

Mà BE vuông góc FG ( ở câu A nhưng mình không biêt làm )

=> BE đi qua M

=> BE, AG và CF đồng quy 

a) Ta có: ABCD là hình vuông

nên DB là tia phân giác của \(\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)

hay \(\widehat{FDM}=45^0\)

Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)

nên ΔMFD vuông cân tại F

Suy ra: FM=FD(1)

Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AFM}=90^0\)

\(\widehat{AEM}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AE=MF(2)

Từ (1) và (2) suy ra AE=DF

Xét ΔAED vuông tại A và ΔDFC vuông tại F có 

AE=DF

AD=DC

Do đó: ΔAED=ΔDFC

Suy ra: DE=CF

8 tháng 8 2021

a, AEMF là hình chữ nhật nên AE=FM

ΔDFM vuông cân tại suy ra FM=DF

⇒AE=DFsuy ra ΔADE=ΔDCF

⇒DE=CF

 

b, Tương tự câu a, dễ thấy AF=BE

⇒ΔABF=ΔBCE

⇒ABF^=BCE^ nên BF vuông góc CE

Gọi là giao điểm của BFvà DE

⇒H là trực tâm của tam giác CEF

Gọi là giao điểm của BCvà MF

CN=DF=AEvà MN=EM=AF

ΔAEF=ΔCMN

⇒ˆAEF=ˆMCN

⇒CM⊥EF

24 tháng 10 2018

Là Sao bạn ???

15 tháng 3 2016

Cho hình vuông ABCD, M là 1 điểm nằm trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.

a) CMR: DE vuông góc với CF; EF=CM.

b) CMR: 3 đườn thẳng DE, BF, CM đồng quy.

c) Xác định vị trí điểm M để tứ giác AEMF có diện tích lớn nhất

ai tích mình tích lại