Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN=BE và MN//BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM
=>M nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2=AN
=>N nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra MN là đường trung trực của AH
Xét ΔABC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung bình
=>ME=AC/2
mà HN=AC/2
nên ME=HN
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
b: góc GAH+góc DGA
=90 độ-góc BHA+góc DGA
=90 độ
=>DG vuông góc với AH
a: Xét ΔCDA có CI/CD=CO/CA
nên OI//AD và OI=1/2AD
=>OE//AD và OE=AD
=>AOED là hình bình hành
a: Xét ΔHDC có
N là trung điểm của HD
M là trung điểm của HC
Do đó: NM là đường trung bình của ΔHDC
Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)
mà AB//DC và \(AB=\dfrac{CD}{2}\)
nên NM//AB và NM=AB
b: Xét tứ giác ABMN có
AB//NM
AB=NM
Do đó: ABMN là hình bình hành
e) Chứng minh HI, ST, KF đồng quy.
Gọi O là giao điểm của EI và HK.
Xét tứ giác HIKE ta có:
góc IHE = 900 (HI _|_ EB tại H)
góc IKE = 900 (KI _|_ EC tại K)
góc HEK = 900 (tứ giác ABEC là hình chữ nhật)
=> tứ giác HIKE là hình chữ nhật (tứ giác có 3 góc vuông)
=> góc HIK = 900
=> KI _|_ HI tại I
Xét hình chữ nhật HIKE ta có:
2 đường chéo EI và HK cắt nhau tại O (cách vẽ)
=> O là trung điểm của EI và O là trung điểm của HK
Xét tam giác FEI vuông tại F ta có:
FO là đường trung tuyến ứng với cạnh huyền EI (O là trung điểm của EI)
=> FO = 1/2 EI
Mà EI = HK (tứ giác HIKE là hình chữ nhật)
Nên FO = 1/2 Hk
Xét tam giác FHK ta có:
FO là đường trung tuyến (O là trung điểm của HK)
FO = 1/2 HK (cmt)
=> tam giác FHK vuông tại F
=> HF _|_ FK tại F
Xét tam giác SHK ta có:
ST là đường cao (ST _|_ HK tại T)
HI là đường cao (HI _|_ KI tại I)
KF là đường cao (KF _|_ HF tại F)
=> HI, ST, KF đồng quy tại một điểm (đpcm)
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE