K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

a, Chứng minh ∆CMB = ∆DNC =>  N C E ^ = C D N ^

Từ đó chứng minh được  C E N ^ = 90 0

b, Ta có A,D,E,M cùng thuộc được tròn đường kính DM

c, Gọi I là trung điểm của CD, chứng minh AI song song với MC

=> ∆ADE cân tại A

=> B,E,D cùng thuộc (A;AB)

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

31 tháng 3 2020

vgfykgkuy

31 tháng 3 2020

mk bt nhưng mk ko bt

29 tháng 11 2023

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔDCB vuông tại D

=>CD\(\perp\)DB tại D và \(\widehat{CDB}=90^0\)

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>\(\widehat{BEC}=90^0\)

ΔBEC vuông tại E

=>BE\(\perp\)EB tại E

=>BE\(\perp\)AC tại E

b:

Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,H,E cùng thuộc đường tròn đường kính AH

=>I là trung điểm của AH

c: Xét ΔABC có 

BE,CD là đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại K

Xét ΔHAC có

I,M lần lượt là trung điểm của HA,HC

=>IM là đường trung bình của ΔHAC

=>IM//AC

Xét ΔBHC có

M,O lần lượt là trung điểm của CH,CB

=>MO là đường trung bình của ΔBHC

=>OM//BH

OM//BH

BH\(\perp\)AC

Do đó: OM\(\perp\)AC

IM//AC

OM\(\perp\)AC

Do đó: IM\(\perp\)OM

d: ID=IH

=>ΔDIH cân tại I

=>\(\widehat{IDH}=\widehat{IHD}\)

mà \(\widehat{IHD}=\widehat{KHC}\)(hai góc đối đỉnh)

và \(\widehat{KHC}=\widehat{CBD}\left(=90^0-\widehat{DCB}\right)\)

nên \(\widehat{IDH}=\widehat{CBD}\)

OD=OC

=>ΔODC cân tại O

=>\(\widehat{ODC}=\widehat{OCD}\)

=>\(\widehat{HDK}=\widehat{DCB}\)

\(\widehat{IDK}=\widehat{IDH}+\widehat{KDH}\)

\(=\widehat{DBC}+\widehat{DCB}=90^0\)

=>ID là tiếp tuyến của (O)(1)

Xét ΔIDO và ΔIEO có

ID=IE

DO=EO

IO chung

Do đó: ΔIDO=ΔIEO

=>\(\widehat{IDO}=\widehat{IEO}=90^0\)

=>IE là tiếp tuyến của (O)(2)

Từ (1),(2) suy ra các tiếp tuyến tại D và E của (O) cắt nhau tại I(ĐPCM)

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC