K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

mà \(\widehat{A}=90^0\)

nên AECF là hình chữ nhật

8 tháng 12 2021

Làm các câu còn lại được không ạ ngaingung

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

23 tháng 10 2023

a: \(AM=MB=\dfrac{AB}{2}\)

\(CN=DN=\dfrac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=DN

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có AM=AD

nên AMND là hình thoi

b: Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

=>BN cắt MC tại trung điểm của mỗi đường

=>F là trung điểm chung của BN và MC

AMND là hình thoi

=>AN cắt MD tại trung điểm của mỗi đường

=>E là trung điểm chung của AN và MD

Xét ΔMDC có

E,F lần lượt là trung điểm của MD,MC

=>EF là đường trung bình

=>EF//DC

a: Xét tứ giác APQD có 

AP//QD

AP=QD

Do đó: APQD là hình bình hành

mà AP=AD

nên APQD là hình thoi

b: Xét tứ giác PBQD có 

PB//QD

PB=QD

Do đó: PBQD là hình bình hành

Suy ra: PD//QB và PD=QB(1)

Xét tứ giác BPQC có 

BP//QC

BP=QC

Do đó: BPQC là hình bình hành

mà BP=BC

nên BPQC là hình thoi

=>PC và QB cắt nhau tại trung điểm của mỗi đường

hay K là trung điểm của BQ

=>KQ=BQ/2(2) 

Ta có: APQD là hình thoi

nên AQ và PD vuông góc với nhau tại trung điểm của mỗi đường

=>I là trung điểm của PD

=>IP=PD/2(3)

Từ (1), (2) và (3) suy ra IP//QK và IP=QK

hay IPKQ là hình bình hành

mà \(\widehat{PIQ}=90^0\)

nên IPKQ là hình chữ nhật

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông gócvới nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tiađối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.a) Chứng minh các tam giác APS, AQR là các tam giác cân.b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.Chứng minh tứ giác AMHN là hình chữ...
Đọc tiếp

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

0
18 tháng 11 2021

a. Vì ABCD là hcn nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AM=CN=BM=DN\)

Mà ABCD là hcn nên AB//CD hay AM//CN

Vậy AMCN là hbh

b. Vì AM=DN và AM//DN(AB//CD) và \(\widehat{MAD}=90^0\) nên AMND là hcn

Mà O là trung điểm MD nên O là trung điểm AN

Vậy A,O,N thẳng hàng

c. Vì BM=CN và BM//CN(AB//CD) và \(\widehat{MBC}=90^0\) nên BMNC là hcn

Mà I là trung điểm MC nên I là trung điểm BN hay MC giao BN tại I

Mà BMNC là hcn nên \(BN=MN\Rightarrow MI=IN\Rightarrow I\in\) trung trực MN

Mà AMND là hcn nên \(AN=MD\Rightarrow OM=ON\Rightarrow O\in\) trung trực MN

Vậy OI là trung trực MN hay O đx I qua MN

31 tháng 10 2021

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành