K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).

Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn  đường kính OP => Tứ giác OMNP nội tiếp.

2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)

 Tam giác  ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN

=>  ÐOPM = ÐOCM.

Xét hai tam giác  OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)

Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).

Từ (1) và (2) => Tứ giác CMPO là hình bình hành.

3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC

=>  => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.

.

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

9 tháng 12 2019

Gọi I là trung điểm DC => O Ià tâm đường tròn đường kính CD

Ta có: ( O ) và ( A ) cắt nhau tại D và M 

=> DM vuông góc AO

Xét tam giác ADO có: ^ODM = ^DAM ( cùng phụ ^ MDA )

Gọi I là giao điểm của DM và BC

Xét 2 tam giác vuông ADO và DCI có:

^ CDI = ^DAO ( vì ^ODM = ^DAM )

DA = CD ( ABCD là hình vuông )

=> Tam giác ADO =  tam giác DCI 

=> DO = CI 

mà DO = 1/2 DC = 1/2 BC

=> CI = 1/2 BC

=> I là trung điểm BC

Vậy ....

a: Xet (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔACB vuông tại C

Xét ΔCAB vuông tại C co CH là đường cao

nên AC^2=AH*AB

=>AB=20^2/8=25cm

=>AO=12,5cm

b: ΔOCD cân tại O

mà OM là đường cao

nênOM là phân giác của góc COD

Xét ΔMCO và ΔMDO có

OC=OD

góc COM=góc DOM

OM chung

=>ΔMCO=ΔMDO

=>góc MDO=90 độ

=>MD là tiếp tuyến của (O)

Xét ΔOCM vuông tại C có CH là đường cao

nên HO*HM=HC^2

mà HC^2=HA*HB

nên HO*HM=HA*HB