Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).
Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn đường kính OP => Tứ giác OMNP nội tiếp.
2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)
Tam giác ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN
=> ÐOPM = ÐOCM.
Xét hai tam giác OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)
Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).
Từ (1) và (2) => Tứ giác CMPO là hình bình hành.
3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC
=> => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.
.
Gọi I là trung điểm DC => O Ià tâm đường tròn đường kính CD
Ta có: ( O ) và ( A ) cắt nhau tại D và M
=> DM vuông góc AO
Xét tam giác ADO có: ^ODM = ^DAM ( cùng phụ ^ MDA )
Gọi I là giao điểm của DM và BC
Xét 2 tam giác vuông ADO và DCI có:
^ CDI = ^DAO ( vì ^ODM = ^DAM )
DA = CD ( ABCD là hình vuông )
=> Tam giác ADO = tam giác DCI
=> DO = CI
mà DO = 1/2 DC = 1/2 BC
=> CI = 1/2 BC
=> I là trung điểm BC
Vậy ....
a: Xet (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔACB vuông tại C
Xét ΔCAB vuông tại C co CH là đường cao
nên AC^2=AH*AB
=>AB=20^2/8=25cm
=>AO=12,5cm
b: ΔOCD cân tại O
mà OM là đường cao
nênOM là phân giác của góc COD
Xét ΔMCO và ΔMDO có
OC=OD
góc COM=góc DOM
OM chung
=>ΔMCO=ΔMDO
=>góc MDO=90 độ
=>MD là tiếp tuyến của (O)
Xét ΔOCM vuông tại C có CH là đường cao
nên HO*HM=HC^2
mà HC^2=HA*HB
nên HO*HM=HA*HB