Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
## Bài 1:
**a) Chứng minh rằng các tam giác AMQ, ANP vuông cân.**
* **Tam giác AMQ:**
* Ta có: $\widehat{MAQ} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{AMQ} = \widehat{ABM}$ (cùng phụ với $\widehat{AMB}$)
* Mà $\widehat{ABM} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{AMQ} = 45^\circ$
* Vậy tam giác AMQ vuông cân tại A.
* **Tam giác ANP:**
* Ta có: $\widehat{NAP} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{ANP} = \widehat{ADN}$ (cùng phụ với $\widehat{AND}$)
* Mà $\widehat{ADN} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{ANP} = 45^\circ$
* Vậy tam giác ANP vuông cân tại A.
**b) Gọi giao điểm của QM và NP là R. Gọi I, K là trung điểm của đoạn thẳng MQ, PN. Chứng minh rằng AIKR là hình chữ nhật**
* **Chứng minh AIKR là hình bình hành:**
* Ta có: I là trung điểm của MQ, K là trung điểm của PN.
* Nên IK là đường trung bình của hình thang MNPQ.
* Do đó IK // MN // PQ.
* Mà AI // KR (do AI là đường trung bình của tam giác AMQ, KR là đường trung bình của tam giác ANP)
* Vậy AIKR là hình bình hành.
* **Chứng minh AIKR là hình chữ nhật:**
* Ta có: $\widehat{IAK} = 90^\circ$ (do AI // KR và $\widehat{IAK}$ là góc vuông)
* Vậy AIKR là hình chữ nhật.
**c) Chứng minh rằng bốn điểm K,B,I,D thẳng hàng**
* **Chứng minh KB // ID:**
* Ta có: KB là đường trung bình của tam giác BCP, ID là đường trung bình của tam giác DQN.
* Nên KB // CP // DQ // ID.
* Vậy KB // ID.
* **Chứng minh KB = ID:**
* Ta có: KB = 1/2 CP, ID = 1/2 DQ.
* Mà CP = DQ (do ABCD là hình vuông)
* Nên KB = ID.
* **Kết luận:**
* Do KB // ID và KB = ID nên KBID là hình bình hành.
* Mà $\widehat{KBI} = 90^\circ$ (do KB // CP và $\widehat{KBI}$ là góc vuông)
* Vậy KBID là hình chữ nhật.
* Do đó bốn điểm K,B,I,D thẳng hàng.
## Bài 2:
**a) Chứng minh rằng BF = CE; BF ⊥ CE**
* **Chứng minh BF = CE:**
* Ta có: ABDE và ACGF là hình vuông.
* Nên AB = AE, AC = AF.
* Do đó BF = BC + CF = AB + AC = AE + AF = CE.
* **Chứng minh BF ⊥ CE:**
* Ta có: $\widehat{ABF} = 90^\circ$ (do ABDE là hình vuông)
* $\widehat{ACE} = 90^\circ$ (do ACGF là hình vuông)
* Nên $\widehat{ABF} + \widehat{ACE} = 180^\circ$.
* Do đó BF ⊥ CE.
**b) Tam giác MO O1 2 là tam giác vuông cân**
* **Chứng minh MO O1 2 là tam giác vuông:**
* Ta có: O1 là tâm hình vuông ABDE, O2 là tâm hình vuông ACGF.
* Nên O1O2 là đường trung trực của đoạn thẳng BC.
* Do đó MO1 = MO2.
* Mà $\widehat{MO1O2} = 90^\circ$ (do O1O2 là đường trung trực của BC)
* Vậy tam giác MO O1 2 là tam giác vuông tại O.
* **Chứng minh MO O1 2 là tam giác cân:**
* Ta có: MO1 = MO2 (chứng minh trên)
* Vậy tam giác MO O1 2 là tam giác cân tại M.
* **Kết luận:**
* Tam giác MO O1 2 là tam giác vuông cân tại O.
Có : góc BAM + góc MAD = 90 độ
Lại có : góc MAD + góc DAQ = 90 độ
=> góc BAM = góc DAQ
=> Tam giác ADQ = tam giác ABM ( cgv - gn )
=> AM=AQ => tam giác AMQ cân tại A
Mà tam giác AMQ vuông tại A => tam giác AMQ vuông cân tại A
Tương tự : cm tam giác PAB = tam giác NAD ( cgv - gn )
=> PA = NA => tam giác ANP cân tại A
Mà tam giác ANP vuông tại A nên tam giác ANP vuông cân tại A
Tk mk nha
Xét tam giác CNP vuông tại C có CE là trung tuyến => CE = NP/2
Tương tự : EA = NP/2
=> CE = EA
=> E thuộc trung trực của AC
Tương tự : cm AF = CF = QM/2
=> F thuộc trung trực AC
Mà tứ giác ABCD là hình vuông nên BD chính là trung trực của AC
=> B;D;E;F thẳng hàng
Tk mk nha
a) Xét tam giác vuông ABR và ADQ có:
AB = AD (gt)
Góc BAR + góc BAP = 90 độ
Góc DAQ + góc BAP = 90 độ
=> Góc BAR = Góc DAQ
=> Tam giác vuông ABR = tam giác vuông ADQ (cạnh góc vuông – góc nhọn kề)
=> AR = AQ (2 cạnh tương ứng)
=> Tam giác AQR cân tại A.
CMTT ta có tam giác ADS = tam giác ABP
=> AS = AP => Tam giác APS cân tại A.
b) Tam giác AQR cân tại A => Trung tuyến AM đồng thời là đường cao.
=> AM vuông góc với QR => Góc AMH = 90 độ
Tương tự: Tam giác APS cân tại A => Trung tuyến AN đồng thời là đường cao.
=> AN vuông góc với SP => góc ANP = 90 độ hay góc ANH= 90 độ.
Tam giác AQR vuông cân tại A => Góc AQR = góc ARQ = 45 độ => Góc PQH = 45 độ.
Tam giác APS vuông cân tại A => góc ASP = góc APS = 45 độ => góc QPH = 45 độ (đối đỉnh).
Xét tam giác PHQ có: Góc PQH + góc QPH = 45 độ + 45 độ = 90 độ
=> Tam giác PHQ vuông cân tại H => PH vuông góc với PQ
=> góc NHM = 90 độ
Xét tứ giác AMHN có: Góc AMH = góc ANH = góc NHM = 90 độ
=> AMHN là hình chữ nhật (dhnb)
c) Xét tam giác SQR có:
BC vuông góc CD => RC vuông góc SQ => RC là đường cao.
AP vuông góc AR => QA vuông góc RS => QA là đường cao.
Mà RC cắt QA tại P
Vậy P là trực tâm tam giác SQR.
d) Tam giác ANP vuông tại A có trung tuyến AN => AN = SP/2
Tam giác CSP vuông tại C có trung tuyến CN => CN = SP/2
=> AN = CN => N thuộc trung trực của AC.
CMTT ta có MA = MC => M thuộc trung trực của AC.
Vậy MN là trung trực của AC.
e) Ta có BA = BC (gt) => B thuộc trung trực của AC.
Mà MN là trung trực của AC (cmt) => B thuộc MN
Tương tự DA = DC (gt) => D thuộc trung trực của AC.
Mà MN là trung trực của AC (cmt) => D thuộc MN
Vậy M, B, N, D thẳng hàng.