K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

Kẻ đường kính BF thì F, A, D thẳng hàng. Gọi DE là tiếp tuyến kẻ từ D. Khi đó ta có:  D E 2 = D A . D F => AF = 6cm. Từ đó tính được OB =  10 cm

27 tháng 11 2021

a, 700 góc nào bạn ? 

b, Vì AB là tiếp tuyến (O) => ^ABO = 900 

AO giao BC = K 

AB = AC ; OB = OC = R 

Vậy OA là đường trung trực đoạn BC 

Xét tam giác ABO vuông tại B, đường cao BK

Áp dụng định lí Pytago tam giác ABO vuông tại B 

\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm 

Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm 

Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm 

Chu vi tam giác ABC là :

 \(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm 

10 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét ΔCBD có :

CI = IB

CO = OD (bán kính)

⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

A C 2   =   O A 2   –   O C 2   =   4 2   –   2 2   =   12

=> AC = √12 = 2√3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó AB = BC = AC = 2√3 (cm).

28 tháng 12 2023

a: Xét (O) có

AD là đường kính

AB\(\perp\)AD tại A

Do đó: AB là tiếp tuyến của (O)

Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)

nên AOMB là tứ giác nội tiếp

=>A,O,M,B cùng thuộc một đường tròn

b: Xét (O) có

OD là bán kính

DK\(\perp\)DO tại D

Do đó: DK là tiếp tuyến của (O)

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: OB là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)

Xét (O) có

KM,KD là các tiếp tuyến

Do đó: OK là phân giác của góc DOM

=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)

Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)

=>\(2\cdot\widehat{KOB}=180^0\)

=>\(\widehat{KOB}=90^0\)

=>OK\(\perp\)OB

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: BA=BM

Xét (O) có

KD,KM là các tiếp tuyến

Do đó: KD=KM

Xét ΔOBK vuông tại O có OM là đường cao

nên \(BM\cdot MK=OM^2\)

=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)

c: Ta có: BA=BM

=>B nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM

mà BO\(\perp\)OK

nên AM//OK

Xét ΔDEA có

O là trung điểm của AD

OK//AE

Do đó: K là trung điểm của DE

28 tháng 12 2023

 

a: Xét (O) có

AD là đường kính

AB\(\perp\)AD tại A

Do đó: AB là tiếp tuyến của (O)

Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)

nên AOMB là tứ giác nội tiếp

=>A,O,M,B cùng thuộc một đường tròn

b: Xét (O) có

OD là bán kính

DK\(\perp\)DO tại D

Do đó: DK là tiếp tuyến của (O)

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: OB là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)

Xét (O) có

KM,KD là các tiếp tuyến

Do đó: OK là phân giác của góc DOM

=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)

Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)

=>\(2\cdot\widehat{KOB}=180^0\)

=>\(\widehat{KOB}=90^0\)

=>OK\(\perp\)OB

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: BA=BM

Xét (O) có

KD,KM là các tiếp tuyến

Do đó: KD=KM

Xét ΔOBK vuông tại O có OM là đường cao

nên \(BM\cdot MK=OM^2\)

=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)

c: Ta có: BA=BM

=>B nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM

mà BO\(\perp\)OK

nên AM//OK

Xét ΔDEA có

O là trung điểm của AD

OK//AE

Do đó: K là trung điểm của DE

28 tháng 12 2023

Vẽ hình hộ mình nhé bạn

 

vẽ hình hộ mình đề này                                                                                                       Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ BM là tiếp tuyến của đường tròn O ( M là tiếp điểm, M khác A), BM cắt CD tại K                                                                                      a) Cm 4 điểm A,B,M,O cùng thuộc 1 đg tròn ( cm: 2 tam nội tiếp)         ...
Đọc tiếp

vẽ hình hộ mình đề này                                                                                                       Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ BM là tiếp tuyến của đường tròn O ( M là tiếp điểm, M khác A), BM cắt CD tại K                                                                                      a) Cm 4 điểm A,B,M,O cùng thuộc 1 đg tròn ( cm: 2 tam nội tiếp)                         b) Chứng minh OB vuông góc OK và BM.MK= AB^2/4                                 c) Đường thẳng AM cắt CD tại E. Cm K là trung điểm của ED và tính chu vi tứ giác ABKD

1
28 tháng 12 2023

Phần a) CM 2 tam giác nội tiếp thôi bạn

 

27 tháng 8 2017

a, ∆OAC = ∆OBC (c.g.c)

=>  O B C ^ - O A B ^ = 90 0

=> đpcm

b, Sử dụng hệ thức lượng trong tam giác vuông OBC tính được OC=25cm

2 tháng 5 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)

b) Ta có: OH vuông góc AB nên H là trung điểm của AB (quan hệ vuông góc giữa đường kính và dây)

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy OC = 25 cm