K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2023

\(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{BA}\)(2)

\(\overrightarrow{MD}-\overrightarrow{MC}=\overrightarrow{CM}+\overrightarrow{MD}=\overrightarrow{CD}\)(1)

Vì ABCD là hình vuông nên \(\overrightarrow{BA}=\overrightarrow{CD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MD}-\overrightarrow{MC}\)

=>\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {AM}  =  - \overrightarrow {MA} ,\;\overrightarrow {DM}  =  - \overrightarrow {MD} \)

\( \Rightarrow \overrightarrow {MB}  - \overrightarrow {MA}  = \overrightarrow {MB}  + \overrightarrow {AM}  = \overrightarrow {AM}  + \overrightarrow {MB}  = \overrightarrow {AB} \)

Tương tự ta có: \(\overrightarrow {MC}  - \overrightarrow {MD}  = \overrightarrow {MC}  + \overrightarrow {DM}  = \overrightarrow {DM}  + \overrightarrow {MC}  = \overrightarrow {DC} \)

Mà \(\overrightarrow {AB}  = \overrightarrow {DC} \)(do ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {MB}  - \overrightarrow {MA}  = \overrightarrow {MC}  - \overrightarrow {MD} \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Cách 1:

Do ABCD là hình bình hành nên \(\overrightarrow {AB}  = \overrightarrow {DC} \)

\(\begin{array}{l} \Rightarrow \overrightarrow {AM}  + \overrightarrow {MB}  = \overrightarrow {DM}  + \overrightarrow {MC} \\ \Leftrightarrow  - \overrightarrow {MA}  + \overrightarrow {MB}  =  - \overrightarrow {MD}  + \overrightarrow {MC} \\ \Leftrightarrow \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \end{array}\)

Cách 2:

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD}  \Leftrightarrow \overrightarrow {MA}  - \overrightarrow {MB}  = \overrightarrow {MD}  - \overrightarrow {MC} \) (*)

Áp dụng quy tắc hiệu ta có: \(\overrightarrow {MA}  - \overrightarrow {MB}  = \overrightarrow {BA} ;\;\;\overrightarrow {MD}  - \overrightarrow {MC}  = \overrightarrow {CD} \)

Do đó (*) \( \Leftrightarrow \overrightarrow {BA}  = \overrightarrow {CD} \) (luôn đúng do ABCD là hình bình hành)

Cách 3:

Ta có:

\(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {BA}  + \overrightarrow {MD}  + \overrightarrow {DC}  = \overrightarrow {MB}  + \overrightarrow {MD}  + \left( {\overrightarrow {BA}  + \overrightarrow {DC} } \right)\)

Vì ABCD là hình bình hành nên \(\overrightarrow {AB}  = \overrightarrow {DC} \)\( \Rightarrow  - \overrightarrow {BA}  = \overrightarrow {DC} \) hay \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \) (đpcm)

26 tháng 1 2021

Gọi N là trung điểm BC

\(\left|\overrightarrow{MA}+\overrightarrow{MC}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MO}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MC}+2\overrightarrow{MB}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow4\left|\overrightarrow{MN}\right|=\left|\overrightarrow{BD}\right|\)

\(\Rightarrow\left|\overrightarrow{BD}\right|=4\left|\overrightarrow{MN}\right|=4\left|\overrightarrow{DN}+\overrightarrow{MD}\right|\ge4MD-4DN\)

\(\Rightarrow4MD\le BD+4DN\)

\(\Leftrightarrow MD\le\dfrac{BD+4DN}{4}=\dfrac{a\sqrt{2}+2a\sqrt{5}}{4}=\dfrac{2\sqrt{5}+\sqrt{2}}{4}a\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OC}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO}  = 4\overrightarrow {MO} \) (luôn đúng)

(vì O là giao điểm 2 đường chéo nên là trung điểm của AB, CD)

b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\)\(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \overrightarrow {AC}  = \overrightarrow {AC}  + \overrightarrow {AC}  = 2\overrightarrow {AC} \) (đpcm)

20 tháng 10 2019
https://i.imgur.com/j2YKOsG.jpg
12 tháng 5 2017

Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).

NV
24 tháng 12 2020

1.

Đặt \(P=\left|\overrightarrow{AD}+3\overrightarrow{AB}\right|\Rightarrow P^2=AD^2+9AB^2+6\overrightarrow{AD}.\overrightarrow{AB}\)

\(=AD^2+9AB^2=10AB^2=10a^2\)

\(\Rightarrow P=a\sqrt{10}\)

2.

Tam giác ABC đều nên AM là trung tuyến đồng thời là đường cao \(\Rightarrow AM\perp BM\)

\(AM=\dfrac{a\sqrt{3}}{2}\) ; \(BM=\dfrac{a}{2}\)

\(T=\left|\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)

\(\Rightarrow T^2=MA^2+4MB^2+4\overrightarrow{MA}.\overrightarrow{MB}=MA^2+4MB^2\)

\(=\left(\dfrac{a\sqrt{3}}{2}\right)^2+4\left(\dfrac{a}{2}\right)^2=\dfrac{7a^2}{4}\Rightarrow T=\dfrac{a\sqrt{7}}{2}\)

3.

\(T=\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{AB}\right|\)

\(=\left|\dfrac{4}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\right|\Rightarrow T^2=\dfrac{16}{9}AB^2+\dfrac{4}{9}AC^2-\dfrac{16}{9}\overrightarrow{AB}.\overrightarrow{AC}\)

\(=\dfrac{20}{9}AB^2-\dfrac{16}{9}AB^2.cos60^0=\dfrac{20}{9}a^2-\dfrac{16}{9}a^2.\dfrac{1}{2}=\dfrac{4}{3}a^2\)

\(\Rightarrow T=\dfrac{2a}{\sqrt{3}}\)

NV
8 tháng 9 2021

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)

\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)

\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)

\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)

\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)

\(\Rightarrow M\) là trung điểm OA

8 tháng 9 2021

C