Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua điểm M, kẻ đoạn thẳng HK vuông góc với AB và CD (H thuộc AB và K thuộc CD)
=> AHKD và HBCK là hcn
=> AH = DK và HB = KC
ABCD là hv \(\Rightarrow BM+MD=BD=\sqrt{2}AB=\sqrt{2}\)
\(\Delta HAM\) vuông tại H \(\Rightarrow MA^2=AH^2+HM^2\left(ptg\right)=DK^2+HM^2\)
\(\Delta HBM\) vuông tại H \(\Rightarrow MB^2=HM^2+HB^2\left(ptg\right)\)
\(\Delta KMD\) vuông tại K \(\Rightarrow MD^2=KM^2+KD^2\left(ptg\right)\)
\(\Delta KMC\) vuông tại K \(\Rightarrow MC^2=KC^2+MK^2\left(ptg\right)=HB^2+MK^2\)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1\right)\left(MB^2+MD^2\right)\ge\left(MB+MD\right)^2\)
\(\Rightarrow MB^2+MD^2\ge\dfrac{\left(MB+MD\right)^2}{2}=\dfrac{\left(\sqrt{2}\right)^2}{2}=1\)
Ta có:
\(MA^2+MD^2+MB^2+MC^2\)
\(=\left(DK^2+HM^2\right)+\left(HM^2+HB^2\right)+\left(KM^2+KD^2\right)+\left(HB^2+MK^2\right)\)
\(=2\left(DK^2+KM^2\right)+2\left(HM^2+HB^2\right)\)
\(=2\left(MD^2+MB^2\right)\)
\(\ge2\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi \(MA=MB=MC=MD=\dfrac{\sqrt{2}}{2}\)
Bạn hỏi tự vẽ hình nhá
a) Kẻ \(ME\perp AD,MF\perp BC,MG\perp AB,MH\perp CD\)
\(MA^2+MC^2=MB^2+MD^2\)( cùng bằng \(ME^2+MG^2+MF^2+MH^2\))
b) Chứng mih tương tự=>kết quả không đổi.
Ta có: \(MA^2+MC^2=MB^2+MD^2\)(cùng bằng \(ME^2=AE^2+MF^2+CF^2\))
Vậy khi điểm M nằm ngoài hình chữ nhật ABCD thì đẳng thức ở câu a) vẫn đúng.
a, Trên AM lấy điểm E sao cho ME = MB
Có : góc BME = góc BCA = 60 độ
=> tam giác EMB đều => EB = MB và góc EMB = 60 độ
Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ
Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ
=> góc ABE = góc CBM
=> tam giác AEB = tam giác CMB (c.g.c)
=> AE = CM
=> AM = AE + EM = CM+BM
b, Theo câu a có tam giác AEB = tam giác CMB
=> góc EAB = góc MCB
=> tam giác MDC đồng dạng tam giác MBA (g.g)
=> MC/MA = MD/MB
=> MD.MA=MB.MC
Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1
a/ Áp dụng BĐT ba điểm :
\(AM+MB\ge AB\) ; \(BM+MC\ge BC\); \(CM+MD\ge CD\) ; \(DM+MA\ge DA\)
Cộng theo vế : \(2\left(MA+MB+MC+MD\right)\ge AB+BC+CD+DA\)
\(\Leftrightarrow MA+MB+MC+MD\ge\frac{AB+BC+CD+DA}{2}\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
b/ Ta cũng áp dụng BĐT ba điểm :
\(AM+MC\ge AC\) ; \(BM+MD\ge BD\)
Cộng theo vế : \(MA+MB+MC+MD\ge AC+BD\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
(mình chỉ ghi gợi ý rồi bn tự làm nha)
a, gBMD nội tiếp đường tròn=> gBMD =90 độ
ABCD là hình vuông => gDOC = 90 độ
=> tứ giác ODME nội tiếp => gODM + gOEM = 180 độ
mà gOEM = gBEC => dpcm
b,gABM nội tiếp chắn cung AM
gACM nội tiếp chắn cung AM => gABM = gECM
gAMB nội tiếp chắn cung AB
gBMC nội tiếp chắn cung BC
mà cung AB = cung BC ( AB = BC )
=>gAMB = gEMC
=> hai tam giác đồng dạng vì có hai góc bằng nhau
a) Xét (O;R) có:
\(\widehat{BCD}\)là góc nt chắn cung BC
\(\widehat{BAC}\)là góc nt chắn cung BC
\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)
Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)
Xét \(\Delta ACM\)và \(\Delta DBM\):
\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)
\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)
\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)
b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)
Xét \(\left(O;R\right):\)
\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)
\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)
Có\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)
Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)
Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)
Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)
Xét tg ABCE có:
\(AB//CE\)
\(\widehat{MAC}=\widehat{ABE}\)
\(\Rightarrow Tg\)ABCE là hthang cân
c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:
\(AM^2=AC^2-CM^2\)(1)
\(MB^2=BC^2-CM^2\)(2)
\(MC^2=BC^2-BM^2\)(3)
\(MD^2=BD^2-BM^2\)(4)
\(DE^2=BD^2+BE^2\)(5)
Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:
\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))
\(=AC^2+BD^2\)
\(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)
\(=DE^2\)(c/m (5))
Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)
Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)
Dựng ra ngoài tam giác ABC vuông cân tại B điểm P sao cho t/g PBM vuông cân tại B
=> góc PBM = góc ABC => góc PBC = góc MBA
=> Mà BA= BC. BP = BM => t/g PBC = t/g MBA
=> 2MB^2 = PM^2 => 2MB^2 + MC^2 = PC^2 = MA^2