Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này hơi khó nên không chắc nhé bạn ==*
A D B M H N C E G
Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật
Suy ra: AH = DE ( tính chất hình chữ nhật )
Tam giác ABC vuông tại A và có AH là đường cao
Theo hệ thức giữa đường cao và hình chiếu ta có:
AH2 = HB . HC = 4 . 9 = 36 => AH = 6 ( cm )
Vậy DE = 6 ( cm )
b. *Gọi G là giao điểm của AH và DE
Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)
Suy ra tam giác GHD cân tại G
Ta có : \(\widehat{GDH}=\widehat{GHD}\left(1\right)\)
\(\widehat{GDH}+\widehat{MDH}=90^o\left(2\right)\)
\(\widehat{GHD}+\widehat{MHD}=90^o\left(3\right)\)
Từ (1) (2) và (3) , suy ra : \(\widehat{MDH}=\widehat{MHD}\left(4\right)\)
\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MD=MH\left(5\right)\)
Ta lại có : \(\widehat{MDH}+\widehat{MDB}=90^o\left(6\right)\)
\(\widehat{MBD}+\widehat{MHD}=90^o(\Delta BHD\)vuông tại D ) ( 7 )
Từ (4) (6) và (7) , suy ra : \(\widehat{MDB}=\widehat{MBD}\)
\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MB=MD\left(8\right)\)
Từ (5) và (8) , suy ra : \(MB=MH\)hay M là trung điểm của BH
*\(\Delta GHE\)cân tại G
Ta có : \(\widehat{GHE}=\widehat{GEH}\left(9\right)\)
\(\widehat{GHE}+\widehat{NHE}=90^o\left(10\right)\)
\(\widehat{GEH}+\widehat{NEH}=90^o\left(11\right)\)
Từ (9) (10) và (11) , suy ra : \(\widehat{NHE}=\widehat{NEH}\left(12\right)\)
\(\Rightarrow\Delta NEH\)cân tại N => NE = NH ( 13 )
Lại có : \(\widehat{NEC}+\widehat{NEH}=90^o\left(14\right)\)
\(\widehat{NHE}+\widehat{NCE}=90^o(\Delta CEH\)vuông tại E ) ( 15 )
Từ (12) (14) và (15) , suy ra : \(\widehat{NDC}=\widehat{NCE}\)
Suy ra tam giác NCE cân tại N ⇒ NC = NE (16)
Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.
c. Tam giác BDH vuông tại D có DM là đường trung tuyến nên :
\(DM=\frac{1}{2}BH=\frac{1}{2}.4=2\left(cm\right)\)
\(\Delta CEH\)vuông tại E có EN là đường trung tuyến nên :
\(EN=\frac{1}{2}CH=\frac{1}{2}.9=4,5\left(cm\right)\)
Mà \(MD\perp DE\)và \(NE\perp DE\)nên MD // NE
Suy ra tứ giác DENM là hình thang
Vậy : \(S_{DENM}=\frac{DM+NE}{2}.DE=\frac{2+4,5}{2}.6=19,5\left(cm^2\right)\)
bạn có gõ nhầm ko? M là TĐ của BC sao N cũng là TĐ của cạnh BC vậy?
A B C D H K G E F I O
1) Tam giác vuông ABH = tam giác vuông BAK (Góc vuông A = góc vuông B, cạnh AB chung, góc \(\widehat{KAB}=\widehat{HBA}\))
=> AH = BK
Mà AH // BK cì cùng vuông góc với AB => ABKH là hình bình hành, lại có 2 góc vuông nên nó là hình chữ nhật
b) Gọi O là trung điểm của HK. Ta có E, I , O thẳng hàng do ABKH là hình chữ nhật (các bạn tự chứng minh)
HK // AB // DC => E, O, F thẳng hàng
HKDC là hình thang cân => O, G, F cũng thẳng hàng
=> E, I, O, G, F thảng hàng
diện tích hình thang là : 115 x 2 = 230 ( cm2)
mình đã thi vio rồi
độ dài cạnh đáy BC là :
200 x 2 : 20 = 20 (cm)
vì M là trung điểm của đáy BC nên BM=MC
cạnh BM là :
20 : 2 = 10 (cm)
diện tích tam giác ABM là :
20 x 10 : 2 = 100 (cm2)
đáp số 100 cm2
Cho hình tam giác ABC có chiều cao AH là 15cm. Gọi M là trung điểm của cạnh đáy BC. Biết diện tích của hình tam giác ABC là 105cm2, tính diện tích hình tam giác ABM và độ dài cạnh BM
Lời giải:
$\frac{S_{DFI}}{S_{DIC}}=\frac{FI}{IC}$
$\frac{S_{FEI}}{S_{IEC}}=\frac{FI}{IC}$
Đặt $\frac{FI}{IC}=a$ thì:
$S_{DFI}=a\times S_{DIC}$
$S_{FEI}=a\times S_{IEC}$
$S_{DFI}+S_{FEI}=a\times (S_{DIC}+S_{IEC})$
$S_{DEF}=a\times S_{DEC}$
$\frac{AE\times DF}{2}=a\times \frac{DC\times AD}{2}$
$\frac{2\times 2}{2}=a\times \frac{4\times 4}{2}$
$2=a\times 8$
$a=\frac{1}{4}$
Vì $S_{DIC}+S_{DFI}=S_{DFC}=\frac{DF\times DC}{2}=\frac{2\times 4}{2}=4$
Mà tỷ số $\frac{S_{DFI}}{S_{DIC}}=\frac{FI}{IC}=\frac{1}{4}$
Theo bài toán tổng và tỷ suy ra $S_{DIC}=4:(1+4)\times 4=3,2$ (cm vuông)
$S_{IEC}=S_{DEC}-S_{DIC}=8-3,2=4,8$ (cm vuông)
$S_{IEBC}=S_{IEC}+S_{EBC}=4,8+\frac{EB\times BC}{2}=4,8+\frac{2\times 4}{2}=8,8$ (cm vuông)