Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
BM=DN
Do đó: ΔABM=ΔADN
b: ΔABM=ΔADN
=>AM=AN và \(\widehat{MAB}=\widehat{NAD}\)
\(\widehat{MAB}+\widehat{DAM}=\widehat{BAD}=90^0\)
mà \(\widehat{MAB}=\widehat{NAD}\)
nên \(\widehat{DAM}+\widehat{DAN}=90^0\)
=>\(\widehat{MAN}=90^0\)
Xét ΔAMN có AM=AN và \(\widehat{MAN}=90^0\)
nênΔAMN vuông cân tại A
d: ΔAMN cân tại A
mà AI là đường phân giác
nên I là trung điểm của MN và AI\(\perp\)MN tại I
=>AP\(\perp\)MN tại I
Xét ΔPNM có
PI là đường cao
PI là đường trung tuyến
Do đó: ΔPNM cân tại P
=>PN=PM
=>PM=PD+DN=PD+BM
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a) Do ABCD là hình vuông (gt)
\(\Rightarrow AB=AD\)
\(\widehat{ABM}=\widehat{ADN}=90^0\)
Xét hai tam giác vuông: \(\Delta ABM\) và \(\Delta ADN\) có:
\(AB=AD\left(cmt\right)\)
\(BM=DN\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta ADN\) (hai cạnh góc vuông)
\(\Rightarrow AM=AN\) (hai cạnh tương ứng)
\(\widehat{BAM}=\widehat{DAN}\) (hai góc tương ứng)
Ta có:
\(\widehat{BAM}+\widehat{DAM}=90^0\)
\(\Rightarrow\widehat{DAN}+\widehat{DAM}=90^0\)
\(\Rightarrow\widehat{MAN}=90^0\)
\(\Delta AMN\) có:
\(AM=AN\left(cmt\right)\)
\(\Rightarrow\Delta AMN\) cân tại A
Mà \(\widehat{MAN}=90^0\left(cmt\right)\)
\(\Rightarrow\Delta AMN\) vuông cân tại A
b) Do \(\Delta AMN\) cân tại A
E là trung điểm của MN
\(\Rightarrow AE\) là đường trung tuyến, cũng là đường cao của \(\Delta AMN\)
\(\Rightarrow AE\perp MN\)
\(\Rightarrow EF\perp MN\)
Xét hai tam giác vuông: \(\Delta FEM\) và \(\Delta FEN\) có:
\(EM=EN\left(gt\right)\)
\(EF\) là cạnh chung
\(\Rightarrow\Delta FEM=\Delta FEN\) (hai cạnh góc vuông)
\(\Rightarrow FM=FN\) (hai cạnh tương ứng)
Xét \(\Delta FAN\) và \(\Delta FAM\) có:
\(FA\) là cạnh chung
\(FN=FM\left(cmt\right)\)
\(AN=AM\left(cmt\right)\)
\(\Rightarrow\Delta FAN=\Delta FAM\left(c-c-c\right)\)
Đặt BM = DK = x thì KN = x + DN, MC = a - x, CN = a - DN
Từ kết quả của hai tam giác bằng nhau ở câu a và giả thiết ta có:
⇒ Δ AMN = Δ AKN ( c - g - c )
⇒ MN = KN (cạnh tương ứng bằng nhau)
Khi đó, chu vi của tam giác MCN là
MC + CN + MN = a - x + a - DN + x + DN = 2a.
Đặt BM = DK = x thì KN = x + DN, MC = a - x, CN = a - DN
Từ kết quả của hai tam giác bằng nhau ở câu a và giả thiết ta có:
⇒ Δ AMN = Δ AKN ( c - g - c )
⇒ MN = KN (cạnh tương ứng bằng nhau)
Khi đó, chu vi của tam giác MCN là
MC + CN + MN = a - x + a - DN + x + DN = 2a.
a: Xét ΔAND và ΔABM có
góc A chung
AN=DM
AB=AD
=>ΔAND=ΔABM
=>AN=AM
góc NAD=góc BAM
=>góc NAD+góc DAM=góc DAM+góc BAM=90 độ
=>góc NAM=90 độ
=>ΔNAM vuông cân tại A
b: Xét ΔABM và ΔPDA có
góc B=góc D
góc BAM=góc APD
=>ΔABM đồng dạng với ΔPDA
=>AB/BM=PD/AD
=>AB*AD=BM*PD=BC^2
c: Xét ΔAIH và ΔAQD có
góc A chung
góc H=góc D
=>ΔAIH đồng dạng với ΔAQD
=>AI*AD=AH*AQ