K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

F thuộc AB mà AB song song CD thì tại sao BF lại cắt CD được ?????

28 tháng 3 2020

Cho hình vuông ABCD cạnh a, E thuộc BC, F thuộc AD sao Cho CE=AF. Các đường thẳng AE, BF cắt CD tại M và N

a, CMR: CM·DN=a2

b, K là giao của NA và MB. CMR: ^MKN=90

c, Các điểm E và F có vị trí ntn thì MN có độ dài ngắn nhất

9 tháng 3 2021

a) Theo hệ quả của định lý Thales ta có:

\(\dfrac{DN}{AB}=\dfrac{AF}{FD};\dfrac{CM}{AB}=\dfrac{CE}{EB}\Rightarrow\dfrac{DN}{AB}.\dfrac{CM}{AB}=\dfrac{AF}{FD}.\dfrac{CE}{EB}=1\Rightarrow DN.CM=a^2\).

b) Do \(CM.DN=a^2=AD.BC\Rightarrow\dfrac{CM}{BC}=\dfrac{AD}{DN}\).

Mà \(\widehat{MCB}=\widehat{ADN}=90^o\Rightarrow\Delta NDA\sim\Delta BCM\left(c.g.c\right)\Rightarrow\widehat{AND}=\widehat{MBC}\Rightarrow\widehat{AND}+\widehat{MCB}=\widehat{MBC}+\widehat{MCB}=90^o\Rightarrow\widehat{MKN}=90^o\).

c) Áp dụng bất đẳng thức AM - GM:

\(DN+CM\ge2\sqrt{DN.CM}=2a\).

Do đó \(MN=DN+DC+CM\ge2a+a=3a\).

Đẳng thức xảy ra khi và chỉ khi DN = CM \(\Leftrightarrow DN=CM=a\)

\(\Leftrightarrow\) E, F lần lượt là trung điểm của BC, DA.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Uchiha Itachi - Toán lớp 8 | Học trực tuyến

28 tháng 7 2017

(((Làm theo hướng đó đúng rồi.. Tiếp nà )))

HFCE là hình bình hành (tự c/m)

=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)

Mà EC//AK => HF//AK

 => Δ ANK =  Δ FNH (g.c.g)

=> AK=HF (2)

Từ (1) và (2) suy ra AK=EC. Mà AK//EC

=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC

=> O cũng là trung điểm của EK

=> Đpcm...

undefined

Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .

Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .

Ta có : OM , AH cùng vuông góc với EF nên OM // AH 

=> M là trung điểm CH ( Vì O là trung điểm của AC )

Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .

Suy ra : HF // CE // AK 

Dễ chứng minh △HNF = △KNA ( g.c.g )

Suy ra : Tứ giác AHFK là hình bình hành .

Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .

Suy ra : CKAE là hình chữ nhật .

Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )

27 tháng 7 2017

Thử nhé: Gọi O' là trung điểm của AC.

Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).

Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.

nên O'M là đường trung trực của EF. 

Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.

Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM. 

Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?

27 tháng 7 2017

Dù sao cũng cảm ơn nhiều !~