Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) xét tam giác BHD và tam giác BHC có
HD=HC(gt)
BHD=BHC(=90 độ)
BH chung
=> tam giác BHD= tam giác BHC(cgc)
=> BD=BC(hai cạnh tương ứng)
b) ta có HC^2=BC^2-BH^2( áp dụng định lý pytago)
AH^2=AB^2-BH^2( áp dụng định lý pytago)
vì AB<BC=> AB^2<BC^2=> AB^2-BH^2<BC^2-BH^2=> HC^2>AH^2=> HC>AH
a: Xét ΔKBC có
HB<HC
mà HB là hình chiếu của KB trên BC
và HC là hình chiếu của KC trên BC
nên KC>KB
a) Xét tam giác BAD và tam giác BHD có :
\(\widehat{BAD}=\widehat{BHD}=90^o\)
BD chung
\(\widehat{ABD}=\widehat{HBD}\) (Do BD là phân giác)
\(\Rightarrow\Delta BAD=\Delta BHD\) (Cạnh huyền góc nhọn)
\(\Rightarrow AB=HB\)
Ta cũng có \(\Delta BAD=\Delta BHD\) nên AD = HD.
Xét tam giác ADK và tam giác HDC có:
\(\widehat{KAD}=\widehat{CHD}=90^o\)
AD = HD
\(\widehat{ADK}=\widehat{HDC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta ADK=\Delta HDC\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow AK=HC\)
b) (Cô làm theo cách khi chưa học về các đường đồng quy trong tam giác)
Kéo dài BD cắt KC tại I.
Ta thấy BK = BA + AK = BH + HC = BC
Xét tam giác BKI và tam giác BCI có :
\(\widehat{KBI}=\widehat{CBI}\)
BI chung
BK = BC (CMT)
\(\Rightarrow\Delta BKI=\Delta BCI\) (c-g-c)
\(\Rightarrow\widehat{BIK}=\widehat{BIC}\) (Hai góc tương ứng)
Mà chúng lại là hai góc kề bù nên \(\widehat{BIK}=\widehat{BIC}=90^o\)
Vậy nên BD vuông góc KC.
c) Xét tam giác ABH có BA = BH nên nó là tam giác cân.
Vậy BD là phân giác thì đồng thời nó là đường cao.
Vậy BD vuông góc AH.
Lại có BD vuông góc KC nên AH // KC.
a: Xét ΔABC có \(\widehat{ABC}>\widehat{ACB}\)
mà cạnh đối diện với góc ABC là cạnh AC
và cạnh đối diện với góc ACB là cạnh AB
nên AC>AB
b: Xét ΔABC có AC>AB
mà hình chiếu của AC trên BC là HC
và hình chiếu của AB trên BC là HB
nên HC>HB
c: Xét ΔKBC có HC>HB
mà HC là hình chiếu của KC trên BC
và HB là hình chiếu của KB trên BC
nên KC>KB
`a)`
Có `BE` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`
Xét `Delta BAE` và `Delta BHE` có :
`BA=BH(GT)`
`hat(B_1)=hat(B_2)(cmt)`
`BE-chung`
`=>Delta BAE=Delta BHE(c.g.c)`
`=>{(AE=HE),(hat(A_1)=hat(H_1)(1)):}`
`(1)=>hat(H_1)=90^0`
`=>hat(H_2)=90^0`
Có `hat(A_1)=90^0=>hat(A_2)=90^0`
Xét `Delta AEK` và `Delta HEC` có :
`hat(A_2)=hat(H_2)(=90^0)`
`AE=HE(cmt)`
`hat(E_1)=hat(E_2)(đối.đỉnh)`
`=>Delta AEK=Delta HEC(g.c.g)`
`=>AK=HC` ( 2 cạnh t/ứng )
`b)`
Có `BA=BH(GT);AK=HC(cmt)`
`=>BA+AK=BH+HC`
hay `BK=BC`
`=>B in ` trung trực của `KC` (2)
Có `EK=EC(Delta AEK=Delta HEC)`
`=>E in ` trung trực của `KC` (3)
Từ (2) và (3) `=>BE` là trung trực của `KC=>BE⊥KC(đpcm)`
Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC.Biết góc BAH < góc CAH, hãy chứng minh HB < HC.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(\widehat{B}+\widehat{ACH}=90^0\) (1)
Xét tam giác AHB vuông ở H có:
\(\widehat{B}+\widehat{ABH}=90^0\) (2)
Từ (1) và (2) => \(\widehat{ABH}=\widehat{ACH}\)
b) Xét tam giác ABH có:
\(\widehat{BAH}\)là góc đối diện của cạnh HB.
Xét tam giác ACH có:
\(\widehat{CAH}\)là góc đối diện của cạnh HC.
Mà \(\widehat{BAH}>\widehat{CAH}\) ( gt )
=> HB > HC ( Quan hệ giữ cạnh và góc đối diện (
# Học tốt #