K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto AB=(1;3)

vecto AC=(9;-3)

Vì vecto AB*vecto AC=1*9+3*(-3)=0

nên ΔABC vuông tại A

b: ABCD là hình chữ nhật

=>vecto AB=vecto DC

=>10-x=1 và -2-y=3

=>x=9 và y=-5

19 tháng 6 2023

loading...

19 tháng 6 2023

thank you so much 🗿👍

 

10 tháng 10 2017

a.

Gọi (D):y=ax+b chứa điểm A, C

(D'):y=a'x+b' chứa điểm B, C

* Ta có: A thuộc (D) khi 1= 2a+b (1)

C thuộc (D) khi 4= 3a+b (2)

Giải hệ (1), (2) ta suy ra a=3 , b=-5

* Ta có: B thuộc (D') khi 3=6a'+b' (3)

C thuộc (D') khi 4=3a'+b' (4)

Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5

Ta thấy: a.a' = 3.(-1/3)=-1

Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)

Vậy tam giác ABC vuông tại C

Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:

AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)

BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)

Vậy AC=BC (6)

Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C

SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)

b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)

Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B

Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)

ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

a: \(\overrightarrow{AB}=\left(-3;4\right)\)

\(\overrightarrow{AC}=\left(8;6\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A 

c: Tọa độ trọng tâm G là:

\(\left\{{}\begin{matrix}x_G=\dfrac{1-2+9}{3}=\dfrac{8}{3}\\y_G=\dfrac{2+6+8}{3}=\dfrac{16}{3}\end{matrix}\right.\)

13 tháng 1 2022

hảo copy :V