Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.
Vậy ΔDEF đều
b) Vì AD là tia phân giác của ∠BAC (gt)
⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o
Vì AD//MC (gt)
⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)
∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)
Xét ΔAMC có:
Hai góc bằng nhau và bằng 60o
⇒ ΔAMC đều
Vậy ΔAMC đều
Còn lại bạn tự làm nhé
b
AH vuông góc với BC
BC song song với EK
=>AH vuông góc với EK
a) \(DE⊥AB\) (giả thiết)
\(\Rightarrow\widehat{DEA}=\widehat{DEK}=90\text{°}\) (định nghĩa)
\(\Rightarrow\Delta DEA\) vuông tại E (định nghĩa)
\(DF⊥AC\) (giả thiết)
\(\Rightarrow\widehat{DFA}=\widehat{DFI}=90\text{°}\) (định nghĩa)
\(\Rightarrow\Delta DFA\) vuông tại F (định nghĩa)
\(\Delta DEA\) vuông tại E và \(\Delta DFA\) vuông tại F có:
\(\widehat{DAE}=\widehat{DAF}\) (AD là phân giác \(\widehat{BAC}\))
AD chung
\(\Rightarrow\Delta DEA=\Delta DFA\) (cạnh huyền - góc nhọn)
\(\Rightarrow DE=DF\) (cặp cạnh tương ứng);
\(\widehat{EDA}=\widehat{FDA}\) (cặp góc tương ứng)
AD là phân giác \(\widehat{BAC}\) (giả thiết)
\(\Rightarrow\widehat{DAE}=\widehat{DAF}=\frac{\widehat{BAC}}{2}=\frac{120\text{°}}{2}=60\text{°}\) (định nghĩa)
\(\Delta DEA\) vuông tại E (chứng minh trên)
\(\Rightarrow\widehat{DAE}+\widehat{EDA}=90\text{°}\) (tính chất tam giác vuông)
\(60\text{°}+\widehat{EDA}=90\text{°}\)
\(\widehat{EDA}=30\text{°}\)
\(\widehat{EDA}=\widehat{FDA}\) (chứng minh trên)
\(\Rightarrow\widehat{FDA}=30\text{°}\)
\(\widehat{EDF}=\widehat{EDA}+\widehat{FDA}=30\text{°}+30\text{°}=60\text{°}\)
b) \(\Delta DEK\) và \(\Delta DFI\) có:
DE = DF (chứng minh a)
\(\widehat{DEK}=\widehat{DFI}\left(=90\text{°}\right)\)
EK = FI (giả thiết)
\(\Rightarrow\Delta DEK=\Delta DFI\left(c.g.c\right)\)
\(\Rightarrow DK=DI\) (cặp cạnh tương ứng)
c) \(\widehat{BAC}+\widehat{MAC}=180\text{°}\) (2 góc kề bù)
\(120\text{°}+\widehat{MAC}=180\text{°}\)
\(\widehat{MAC}=60\text{°}\)
CM // AD (giả thiết)
\(\Rightarrow\widehat{ACM}=\widehat{DAF}=60\text{°}\) (2 góc so le trong)
Xét \(\Delta AMC\) có: \(\widehat{MAC}+\widehat{ACM}+\widehat{CMA}=180\text{°}\) (tổng 3 góc trong một tam giác)
Thay số: \(60\text{°}+60\text{°}+\widehat{CMA}=180\text{°}\)
\(120\text{°}+\widehat{CMA}=180\text{°}\)
\(\widehat{CMA}=60\text{°}\)
d) Kẻ FG ∩ AD = {G} sao cho FG = AG
\(\Rightarrow\Delta FAG\) cân tại G (dấu hiệu nhận biết tam giác cân)
\(\widehat{DAF}=60\text{°}\) (chứng minh a)
\(\Rightarrow\Delta FAG\) đều (dấu hiệu nhận biết tam giác đều)
\(\Rightarrow\widehat{AFG}=60\text{°}\) (tính chất tam giác đều);
AF = FG = AG (định nghĩa tam giác đều) (1)
\(\widehat{AFG}+\widehat{DFG}=\widehat{DFA}\)
\(60\text{°}+\widehat{DFG}=90\text{°}\)
\(\widehat{DFG}=30\text{°}\)
\(\widehat{FDA}=30\text{°}\) (chứng minh a)
\(\Rightarrow\Delta DFG\) cân tại G (dấu hiệu nhận biết tam giác cân)
\(\Rightarrow DG=FG\) (định nghĩa tam giác cân) (2)
Từ (1) và (2) \(\Rightarrow AG=DG\)
\(G\in AD\)
\(\Rightarrow\) G là trung điểm AD (định nghĩa)
\(\Rightarrow AG=\frac{AD}{2}=\frac{4}{2}=2\left(cm\right)\)
mà AF = AG (chứng minh trên)
\(\Rightarrow AF=2cm\)
c, có ^DAB = ^FAC = 90
^DAB + ^BAC = ^DAC
^FAC + ^BAC = ^FAB
=> ^DAC = ^FAB
xét tg DAC và tg BAF có : AD = AB (gt) và AF = AC (Gt)
=> tg DAC = tg BAF (C-g-c)
=> BF = DC (đn)
b)
theo câu a, ta có tam giác AHD=ACD(CH-GN)
=> AH=AK(1)
tam giác DKC vuông tại K=> DC là cạnh lớn nhất trong tam giác DCK
=> DC>KC(2)
ta có: BA=BD(gt)(3)
từ (1)(2)(3)=> AB+AC<BC+AH
bạn, mk thi hsg gặp câu này làm đc điểm tuyệt đối đó