Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 3^2+4^2=5cm
b,d: Đề bài yêu cầu gì?
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng )
Vậy tam giác ABC vuông tại A(pytago đảo)
b, Xét tam giác BAD và tam giác BED có
^ABD = ^EBD ; BD _ chung
Vậy tam giác BAD = tam giác BED ( ch-gn)
=> DA = DE ( 2 cạnh tương ứng )
c, Xét tam giác ADF và tam giác EDC có
DA = DE ; ^ADF = ^EDC ( đối đỉnh )
Vậy tam giác ADF = tam giác EDC ( ch-cgv)
=> DF = DC ( 2 cạnh tương ứng )
mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E )
=> DF > DE
a) Xét ΔABC có \(BC^2 = AC^2 + AB^2 (5^2 = 3^2 + 4^2)\)
⇒ ΔABC vuông tại A
b) Xét ΔABD và ΔAED
có góc ABD và góc AED cùng vuông
BAD=EAD
⇒ΔABD = ΔAED (ch-gn)
c) Mình nghĩ phần này bạn sai đề rồi, phải làm tam giác BED và EDC chứ DE=DF mà bạn
c) Xét \(\Delta AFD\) và \(\Delta ECD\) có :
AD = DE ; \(\widehat{FAD}=\widehat{DEC}=90^o\) ; \(\widehat{FDA}=\widehat{EDC}\) ( đối đỉnh )
\(\Rightarrow\) \(\Delta AFD\) = \(\Delta ECD\) ( gcg)
\(\Rightarrow\) DF = CD
Xét \(\Delta EDC\) vuông tại E
\(\Rightarrow\) DC > DE ( ch> cgv )
mà DF = DC => DF > DE
Hình dou ạ?