K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

Nếu:

\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\Leftrightarrow c\left(a+b\right)=a\left(c+d\right)\)

\(ac+bc=ac+ad\)

\(bc=ad\)

\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\rightarrowđpcm\)

8 tháng 7 2017

Đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k

=> a=k.b ; c=k.d

Ta có :

\(\dfrac{a+b}{a}\)=\(\dfrac{b.k+b}{b}\)=\(\dfrac{b.\left(k+1\right)}{b}\)=k+1 ( 1 )

\(\dfrac{c+d}{c}\)=\(\dfrac{d.k+d}{d}\)=\(\dfrac{d.\left(k+1\right)}{d}\)=k+1 ( 2 )

Từ (1) và (2) thì : \(\dfrac{a+b}{a}\)=\(\dfrac{c+d}{c}\)

12 tháng 4 2017

a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)

Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)

Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)

b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)

\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)

Vậy \(MIN_B=2014\) khi x = 5

12 tháng 4 2017

b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|

25 tháng 12 2016

Ta có hình vẽ:

A B C K E

a/ Xét tam giác AKB và tam giác AKC có:

AB = AC (GT)

BK = CK (GT)

AK: cạnh chung

=> tam giác AKB = tam giác AKC (c.c.c)

Ta có: tam giác AKB = tam giác AKC

=> góc AKB = góc AKC (2 góc tương ứng)

Mà góc AKB + góc AKC = 1800

=> góc AKB = góc AKC = 1800 : 2 = 900

Vậy AK vuông góc BC (đpcm)

b/ Ta có: \(\begin{cases}AK\perp BC\\EC\perp BC\end{cases}\)=> EC // AK (đpcm)

c/ Ta có: AC: chung (1)

Ta có: góc BAC + góc CAE = 1800

hay 900 + CAE = 1800

=> góc CAE = 900

=> góc BAC = góc CAE (2)

Trong tam giác vuông cân ABC có:

góc ABC + góc ACB = 900

Vì tam giác ABC cân nên góc ABC = góc ACB

=> góc ABC = góc ACB = 900:2 = 450

Ta có: góc ACB + góc ACE = 900 (vì góc BCE=900)

hay 450 + góc ACE = 900

=> góc ACE = 450

Vậy góc ACB = góc ACE = 450 (3)

Từ (1),(2),(3) => tam giác ACB = tam giác ACE

=> CE = CB (2 cạnh tương ứng) (đpcm)

25 tháng 12 2016

ủa bài này quen quen hình như mik có lm r

 

21 tháng 3 2017

câu hỏi đâu ?

21 tháng 3 2017

ben tren y cho co tu chung minh y

2 tháng 3 2017

Theo bài ra, ta có:

\(a-b=3\Rightarrow a=b+3\)

Thay \(a=b+3\) vào \(B\), ta có:

\(B=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\\ B=1-\dfrac{3b+12}{3b+12}\\ B=1-1\\ B=0\)

Vậy: \(B=0\)

---

Chúc bạn học tốt hihi

2 tháng 3 2017

theo bài ra ta có:

\(B=\frac{a-8}{b-5}-\frac{4a-b}{3a+3}\)

\(\Rightarrow B=\frac{a-8}{b-5}-1-\frac{4a-b}{3a+3}+1\)

\(\Rightarrow B=\left(\frac{a-8}{b-5}-1\right)+\left(1-\frac{4a-b}{3a+3}\right)\)

\(\Rightarrow B=\frac{a-8-\left(b-5\right)}{b-5}+\frac{3a+3-\left(4a-b\right)}{3a+3}\)

\(\Rightarrow B=\frac{a-8-b+5}{b-5}+\frac{3a+3-4a+b}{3a+3}\)

\(\Rightarrow B=\frac{a-b-8+5}{b-5}+\frac{b-a+3}{3a+3}\) \(\Rightarrow B=\frac{3-3}{b-5}+\frac{-3+3}{3a+3}\)

\(\Rightarrow B=0+0\\ \Rightarrow B=0\)

vậy B = 0

5 tháng 11 2017

Ta có:

\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

\(\Rightarrow\dfrac{7a-11b}{7c-11d}=\dfrac{4a+5b}{4c+5d}\)

\(\Leftrightarrow\dfrac{7a}{7c}=\dfrac{11b}{11d}=\dfrac{4a}{4c}=\dfrac{5b}{5d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Mặt khác:

\(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

5 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)= k

\(\dfrac{a}{b}=k\) = > a = bk

\(\dfrac{c}{d}=k\) = > c = dk

Ta có: \(\dfrac{7a-11b}{4a+5b}=\dfrac{7.bk-11b}{4.bk+5b}=\dfrac{\left(7.11\right).b.\left(k-1\right)}{\left(4.5\right).b.\left(k+1\right)}\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\)(1)

\(\dfrac{7c-11d}{4c+5d}=\dfrac{7.dk-11d}{4.dk+5d}=\dfrac{\left(7.11\right).d.\left(k-1\right)}{\left(4.5\right).d.\left(k+1\right)}=\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\left(2\right)\)Từ (1) và (2) = > \(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^