Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
Nếu:
\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\Leftrightarrow c\left(a+b\right)=a\left(c+d\right)\)
\(ac+bc=ac+ad\)
\(bc=ad\)
\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\rightarrowđpcm\)
Đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k
=> a=k.b ; c=k.d
Ta có :
\(\dfrac{a+b}{a}\)=\(\dfrac{b.k+b}{b}\)=\(\dfrac{b.\left(k+1\right)}{b}\)=k+1 ( 1 )
\(\dfrac{c+d}{c}\)=\(\dfrac{d.k+d}{d}\)=\(\dfrac{d.\left(k+1\right)}{d}\)=k+1 ( 2 )
Từ (1) và (2) thì : \(\dfrac{a+b}{a}\)=\(\dfrac{c+d}{c}\)
a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)
Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)
b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)
\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)
Vậy \(MIN_B=2014\) khi x = 5
b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|
Ta có hình vẽ:
A B C K E
a/ Xét tam giác AKB và tam giác AKC có:
AB = AC (GT)
BK = CK (GT)
AK: cạnh chung
=> tam giác AKB = tam giác AKC (c.c.c)
Ta có: tam giác AKB = tam giác AKC
=> góc AKB = góc AKC (2 góc tương ứng)
Mà góc AKB + góc AKC = 1800
=> góc AKB = góc AKC = 1800 : 2 = 900
Vậy AK vuông góc BC (đpcm)
b/ Ta có: \(\begin{cases}AK\perp BC\\EC\perp BC\end{cases}\)=> EC // AK (đpcm)
c/ Ta có: AC: chung (1)
Ta có: góc BAC + góc CAE = 1800
hay 900 + CAE = 1800
=> góc CAE = 900
=> góc BAC = góc CAE (2)
Trong tam giác vuông cân ABC có:
góc ABC + góc ACB = 900
Vì tam giác ABC cân nên góc ABC = góc ACB
=> góc ABC = góc ACB = 900:2 = 450
Ta có: góc ACB + góc ACE = 900 (vì góc BCE=900)
hay 450 + góc ACE = 900
=> góc ACE = 450
Vậy góc ACB = góc ACE = 450 (3)
Từ (1),(2),(3) => tam giác ACB = tam giác ACE
=> CE = CB (2 cạnh tương ứng) (đpcm)
Theo bài ra, ta có:
\(a-b=3\Rightarrow a=b+3\)
Thay \(a=b+3\) vào \(B\), ta có:
\(B=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\\ B=1-\dfrac{3b+12}{3b+12}\\ B=1-1\\ B=0\)
Vậy: \(B=0\)
---
Chúc bạn học tốt
theo bài ra ta có:
\(B=\frac{a-8}{b-5}-\frac{4a-b}{3a+3}\)
\(\Rightarrow B=\frac{a-8}{b-5}-1-\frac{4a-b}{3a+3}+1\)
\(\Rightarrow B=\left(\frac{a-8}{b-5}-1\right)+\left(1-\frac{4a-b}{3a+3}\right)\)
\(\Rightarrow B=\frac{a-8-\left(b-5\right)}{b-5}+\frac{3a+3-\left(4a-b\right)}{3a+3}\)
\(\Rightarrow B=\frac{a-8-b+5}{b-5}+\frac{3a+3-4a+b}{3a+3}\)
\(\Rightarrow B=\frac{a-b-8+5}{b-5}+\frac{b-a+3}{3a+3}\) \(\Rightarrow B=\frac{3-3}{b-5}+\frac{-3+3}{3a+3}\)
\(\Rightarrow B=0+0\\ \Rightarrow B=0\)
vậy B = 0
Ta có:
\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)
\(\Rightarrow\dfrac{7a-11b}{7c-11d}=\dfrac{4a+5b}{4c+5d}\)
\(\Leftrightarrow\dfrac{7a}{7c}=\dfrac{11b}{11d}=\dfrac{4a}{4c}=\dfrac{5b}{5d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Mặt khác:
\(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)= k
Vì \(\dfrac{a}{b}=k\) = > a = bk
Vì \(\dfrac{c}{d}=k\) = > c = dk
Ta có: \(\dfrac{7a-11b}{4a+5b}=\dfrac{7.bk-11b}{4.bk+5b}=\dfrac{\left(7.11\right).b.\left(k-1\right)}{\left(4.5\right).b.\left(k+1\right)}\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\)(1)
\(\dfrac{7c-11d}{4c+5d}=\dfrac{7.dk-11d}{4.dk+5d}=\dfrac{\left(7.11\right).d.\left(k-1\right)}{\left(4.5\right).d.\left(k+1\right)}=\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\left(2\right)\)Từ (1) và (2) = > \(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).
e mới lớp 5 nên chịu
thế cũng ko cần bình luận đâu:)