Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC
Ta có: R = B C 2 sin A = a 2 sin 60 ° = a 3
Thể tích V của khối trụ ngoại tiếp lăng trụ là:
V = πR 2 h = π a 3 2 . h = πa 2 h 3 .
Đáp án A.
Bán kính đường tròn đáy r = B C 2 sin A = a 3
Bán kính mặt cầu ngoại tiếp lăng trụ R = h 2 2 + r 2 = 2 a 3 ⇒ V = 4 3 π R 3 = 32 3 π a 3 27 .
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Đáp án là A
Khối lăng trụ có đáy là tam giác đều cạnh a thì diện tích đáy là
Đáp án D
Thể tích khối trụ là V = π r 3 h = π . 2 a 2 . a 3 = 4 π a 3 3
Đáp án B
Xét khối lăng trụ tam giác đều ABC.A’B’C’ ⇒ A A ' = h
Đặt A B = x suy ra bán kính đường tròn ngoại tiếp Δ A B C là R = x 3 3
Khi đó a = x 3 3 ⇒ x = a 3
Thể tích cần tìm là:
V = h S = h a 3 2 3 4 = 3 3 a 2 h 4