K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

giúp mình,mình cần gấp

 

3 tháng 2 2022

- Xét hình thoi \(ABCD\) ta có:

Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\) (gt).

\(\Rightarrow AC\perp BD\) tại \(O\).

-Ta có: \(\widehat{HAM}+\widehat{AMH}=90^0\)(\(\Delta AHM\) vuông tại \(H\)).

\(\widehat{BNH}+\widehat{OMN}=90^0\)(\(\Delta MON\) vuông tại \(O\))

Mà \(\widehat{AMH}=\widehat{OMN}\)(đôi đỉnh).

=>\(\widehat{HAM}=\widehat{BNH}\).

- Xét \(\Delta NBH\) và \(\Delta AMH\) ta có:

\(\widehat{BHN}=\widehat{AHM}=90^0\)..

\(\widehat{HAM}=\widehat{BNH}\) (cmt)

\(\Rightarrow\) \(\Delta NBH\) ∼\(\Delta AMH\) (g-g).

\(\Rightarrow\)\(\dfrac{BH}{HM}=\dfrac{HN}{AH}\)(2 tỉ lệ tương ứng).

\(\Rightarrow BH.AH=HN.HM\).

Mà \(AH=BH=\dfrac{1}{2}AB\) (\(H\) là trung điểm \(AB\)).

\(\Rightarrow\dfrac{1}{2}AB.\dfrac{1}{2}AB=HN.HM\)

\(\Rightarrow AB^2=4HM.HN\)\(\left(1\right)\)

- Xét \(\Delta ABO\) và \(\Delta AMH\) ta có:

\(\widehat{AOB}=\widehat{AHM}=90^0\)..

\(\widehat{A}\) là góc chung

\(\Rightarrow\) \(\Delta ABO\) ∼\(\Delta AMH\) (g-g).

\(\Rightarrow\)\(\dfrac{AO}{AH}=\dfrac{AB}{AM}\)(2 tỉ lệ tương ứng).

\(\Rightarrow AB.AH=AO.AM\).

Mà \(AH=\dfrac{1}{2}AB\) (\(H\) là trung điểm \(AB\)).

\(\Rightarrow AB.\dfrac{1}{2}AB=AO.AM\)

\(\Rightarrow AB^2=2HM.HN\) \(\left(2\right)\).

-Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(AB^2=4.HM.HN=2.AO.AM\)

b: Xét ΔIAK và ΔIBC có

góc IAK=góc IBC

góc AIK=góc BIC

=>ΔIAK đồng dạng với ΔIBC

=>IK/IC=IA/IB=1/2

=>CI=2/3CK

Xét ΔCAA' có

CK là trung tuyến

CI=2/3CK

=>I là trọng tâm

28 tháng 11 2019

76276712