K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tham khảo ở link này nha :

https://h.vn/hoi-dap/question/246529.html

~~ Hok tốt ~~

Bài giải này cùng link : https://h.vn/hoi-dap/question/246529.html   nên bạn tham khảo nhé 

23 tháng 4 2019

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình thoi

⇒ AD // BC

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình thoi ⇒ AB = BC = CD = DA

Mà E, F, G, H là trung điểm của 4 đoạn thẳng trên

⇒ AE = EB = BF = FC = CG = GD = DH = HA.

ΔAEH có góc A = 60º và AE = AH nên là tam giác đều

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Lại có ΔAEH đều

⇒ EH = AH = AE.

Chứng minh tương tự : FG = FC = CG

⇒ EB = BF = FG = GD = DH = HE.

Vậy EBFGDH có tất cả các góc bằng nhau và tất cả các cạnh bằng nhau nên là lục giác đều.

21 tháng 4 2017

ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .

Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)

Vậy EBFGDH là một lục giác đều


21 tháng 4 2017

ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .

Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)

Vậy EBFGDH là một lục giác đều


7 tháng 8 2019

Chứng minh được M Q = N P = 1 2 B D  

Chứng minh tam giác ABD đều, suy ra được MN = BN = NP  PD = DQ = QM

Chứng minh các góc của đa giác MBNPDQ bằng nhau và cùng bằng 1200.

Từ đó quy ra đa giác MBNPDQ là lục giác đều (ĐPCM).

22 tháng 10 2021

Xét ΔACB có

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔACB

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EF//HG và EF=HG

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: \(EH=\dfrac{BD}{2}=\dfrac{AC}{2}\left(3\right)\)

Từ (1) và (3) suy ra EF=EH

Xét tứ giác EHGF có 

EF//GH

EF=GH

Do đó: EHGF là hình bình hành

mà EF=EH

nên EHGF là hình thoi

24 tháng 10 2021

mình cảm ơn nhiều ạ

2 tháng 12 2015

Số đo một góc trong lục giác đều là :\(180\times\left(6-2\right):6=720:6=120\left(độ\right)\)

ABCD là hình thoi =>AB=BC=CD=AD hay 1/2AB=1/2BC=1/2CD=1/2AD

Tam giác AHE có AH=AE (AH=1/2AD;AE=1/2AB)

=> Tam giác AHE cân . Mà A =60 (độ)

=> Tam giác AHE đều nên AHE=AEH=60 (độ)

Mặt khác góc DHE và góc HEB lần lượt kề bù vs AHE và AEH

=>DHE=HEB=120 (độ)

C/m tương tự ta có : HGF=BFG=120 (độ)

Lại có : ABCD là hình thoi có A =60 =>C=60 và D=B=120 (độ)

Lục giác HEBFGD có số đo mỗi góc bằng 120(độ) (cmt)

=> HEBFGD là lục giác đều

....................Đpcm

Hay cách khác cậu có thể c/m lục giác đều bằng cách c/m 6 cạnh bằng nhau thì sẽ dễ và nhanh hơn cách làm này,đương nhiên mk cux pit c/m cách lm đó n mk k tkick z pn tham khảo cách làm này na mặc dù nó hơi dài .!!!

7 tháng 12 2015

a)      nối A với C ,  B với D được:

EF // AC ( đường trung bình của tam giác BAC)

HG // AC ( "         "          "          "        "          "       ) suy ra EF // AC  do cùng // AC

HE // DB ( đường trung bình tam giác ADB  )

FG // DB ( "     "           "         "         "         "        ) suy ra HE // FG  do cùng // với DB

Xét tứ giác EFGH có 2 cặp cạnh đối song song  nên EFGH là hình bình hành

b)  EFGH là hình ....

Thoi , suy ra EH = GH  nên AC=BD  ( do là đường trung bình của hai tam giác ADB,ADC)

vì AC = BD nên ABCD là hình thang cân

Chữ nhật, suy ra HE vuông góc với HG  nên AC vuông góc với  BD

Hình vuông   ,   kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.

Tích nha☺

 

29 tháng 10 2021

undefined

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.