Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ABCD là hình thoi
⇒ AD // BC
+ ABCD là hình thoi ⇒ AB = BC = CD = DA
Mà E, F, G, H là trung điểm của 4 đoạn thẳng trên
⇒ AE = EB = BF = FC = CG = GD = DH = HA.
ΔAEH có góc A = 60º và AE = AH nên là tam giác đều
+ Lại có ΔAEH đều
⇒ EH = AH = AE.
Chứng minh tương tự : FG = FC = CG
⇒ EB = BF = FG = GD = DH = HE.
Vậy EBFGDH có tất cả các góc bằng nhau và tất cả các cạnh bằng nhau nên là lục giác đều.
ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .
Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)
Vậy EBFGDH là một lục giác đều
ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .
Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)
Vậy EBFGDH là một lục giác đều
Chứng minh được M Q = N P = 1 2 B D
Chứng minh tam giác ABD đều, suy ra được MN = BN = NP PD = DQ = QM
Chứng minh các góc của đa giác MBNPDQ bằng nhau và cùng bằng 1200.
Từ đó quy ra đa giác MBNPDQ là lục giác đều (ĐPCM).
Xét ΔACB có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔACB
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra EF//HG và EF=HG
Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: \(EH=\dfrac{BD}{2}=\dfrac{AC}{2}\left(3\right)\)
Từ (1) và (3) suy ra EF=EH
Xét tứ giác EHGF có
EF//GH
EF=GH
Do đó: EHGF là hình bình hành
mà EF=EH
nên EHGF là hình thoi
Số đo một góc trong lục giác đều là :\(180\times\left(6-2\right):6=720:6=120\left(độ\right)\)
ABCD là hình thoi =>AB=BC=CD=AD hay 1/2AB=1/2BC=1/2CD=1/2AD
Tam giác AHE có AH=AE (AH=1/2AD;AE=1/2AB)
=> Tam giác AHE cân . Mà A =60 (độ)
=> Tam giác AHE đều nên AHE=AEH=60 (độ)
Mặt khác góc DHE và góc HEB lần lượt kề bù vs AHE và AEH
=>DHE=HEB=120 (độ)
C/m tương tự ta có : HGF=BFG=120 (độ)
Lại có : ABCD là hình thoi có A =60 =>C=60 và D=B=120 (độ)
Lục giác HEBFGD có số đo mỗi góc bằng 120(độ) (cmt)
=> HEBFGD là lục giác đều
....................Đpcm
Hay cách khác cậu có thể c/m lục giác đều bằng cách c/m 6 cạnh bằng nhau thì sẽ dễ và nhanh hơn cách làm này,đương nhiên mk cux pit c/m cách lm đó n mk k tkick z pn tham khảo cách làm này na mặc dù nó hơi dài .!!!
a) nối A với C , B với D được:
EF // AC ( đường trung bình của tam giác BAC)
HG // AC ( " " " " " " ) suy ra EF // AC do cùng // AC
HE // DB ( đường trung bình tam giác ADB )
FG // DB ( " " " " " " ) suy ra HE // FG do cùng // với DB
Xét tứ giác EFGH có 2 cặp cạnh đối song song nên EFGH là hình bình hành
b) EFGH là hình ....
Thoi , suy ra EH = GH nên AC=BD ( do là đường trung bình của hai tam giác ADB,ADC)
vì AC = BD nên ABCD là hình thang cân
Chữ nhật, suy ra HE vuông góc với HG nên AC vuông góc với BD
Hình vuông , kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.
Tích nha☺
Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:
E H = F G = 1 2 B D v à H G = E F = 1 2 A C
Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.
Bạn tham khảo ở link này nha :
https://h.vn/hoi-dap/question/246529.html
~~ Hok tốt ~~
Bài giải này cùng link : https://h.vn/hoi-dap/question/246529.html nên bạn tham khảo nhé