Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Theo giả thiết ta có: ΔACD và ΔABC đều
Ta có:
ΔABE\(\approx\)CFB(\(\approx\)ΔDFE)
=>AE/BC=AB/CF
<=>AE/AC=AC/CF
Mà ^CAE = ^ACF(=120o)
=>ΔACE\(\approx\)ΔCFA(c.g.c)
* Ta có:
^CAF + ^FAB = ^CAB= 60o
Mà ^FAB = ^CFA(AB//CF,slt)
và ^CFA = ^ACE(ΔACE\(\approx\)ΔCFA)
=> ^CAF + ^ACE = 60o
=> ^AOC = 120o
=> ^EOF = 120o (đđ)
Nguồn : Mạng
Bài 1:
\(\widehat{B}=180^0-70^0=110^0\)
\(\widehat{D}=180^0-130^0=50^0\)
Bài 2:
Gọi E là trung điểm của CD
Xét tứ giác ABED có
AB//ED
AB=ED
DO đó: ABED là hình bình hành
mà AB=AD
nên ABED là hình thoi
mà \(\widehat{BAD}=90^0\)
nên ABED là hình vuông
=>BE vuông góc với DC
Ta có: ABED là hình vuông
nên DB là tia phân giác của góc ADE
=>\(\widehat{BDE}=45^0\)
Xét ΔBDC có
BE là đường cao
BE là đường trung tuyến
Do đó:ΔBDC cân tại B
=>\(\widehat{C}=45^0\)
hay \(\widehat{ABC}=135^0\)