Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nhé ez
xét \(\Delta ABDvà\Delta BDC\)
+) góc ABD = góc BDC (AB SS CD)
+)\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{1}{2}\)
vậy tam giác abd đồng dạng bdc (c.g.c)
a, Xét ΔABD và ΔBDC có :
\(\widehat{A}=\widehat{DBC}\left(gt\right)\)
\(\widehat{ABD}=\widehat{BDC}\) (AB//CD, slt)
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\)
b, Ta có : \(\Delta ABD\sim\Delta BDC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AD}{DC}\)
hay \(\dfrac{6}{12}=\dfrac{8}{BC}\)
\(\Rightarrow BC=\dfrac{12.8}{6}=16\left(cm\right)\)
a) Xét ΔABD vuông tại A và ΔHDB vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HDB}\)(hai góc so le trong, AB//DH)
Do đó: ΔABD=ΔHDB(Cạnh huyền-góc nhọn)
b) Xét tứ giác ABHD có
\(\widehat{BAD}=90^0\)(gt)
\(\widehat{ADH}=90^0\)(gt)
\(\widehat{BHD}=90^0\)(gt)
Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật ABHD có AB=AD(gt)
nên ABHD là hình vuông(Dấu hiệu nhận biết hình vuông)
Suy ra: AB=DH=AD=BH=2(cm)
Ta có: DH+HC=DC(H nằm giữa D và C)
nên HC=DC-DH=4-2=2(cm)
Xét ΔBHC vuông tại H có BH=HC(=2cm)
nên ΔBHC vuông cân tại H(Định nghĩa tam giác vuông cân)
a)ta có \(AD\perp DC,BH\perp DC\)
\(\Rightarrow AD\)//BH
mà AB//DH
=> AB=BH=HD=DA=2 cm
Xét △ABD và △HDB có
AB=HD(chứng minh trên)
BD;chung
AD=BH(chứng minh trên)
=>△ABD = △HDB(c-c-c)
vậy △ABD = △HDB
ta có DH=2 cm
mà DC=4cm
=>HC=2 cm
ta có HC=BH(=2cm)
mà BH⊥HC
=>△BHC vuông cân tại H
1) coi lại đề
2) a) tam giác ABD và tam giác ABC có
góc A=góc A, góc ABD=góc ACB
=> tam giác ABD đồng dạng tam giác ACB (g-g)
b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4