Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì tứ giác ABCD là hình thang AB//CD nên góc A+ góc D=180 độ mà góc A- góc D=40 do suy ra goc D= (180-40):2=70 do suy ra goc A= 180-70=110 do
Tương tự ta cũng có: \(\widehat{B}+\widehat{C}=180^0\)ma \(\widehat{B}=4\times\widehat{C}\)\(\Rightarrow4\times\widehat{C}+\widehat{C}=180^0\Rightarrow5\times\widehat{C}=180^0\Rightarrow\widehat{C}=36^0\Rightarrow\widehat{B}=180^0-36^0=144^0\)
Còn bài 2 thì tớ chưa nghĩ ra bạn rang đoi nhá
2. Vì AB//DC ma \(K\in AB\Rightarrow\widehat{AKD}=\widehat{KDC};\widehat{BKC}=\widehat{KCD}\) (1)
Vì DK là tia phân giác của \(\widehat{ADC}\Rightarrow\widehat{ADK}=\widehat{KDC}\)và CK là tia phân giác của \(\widehat{BCD}\Rightarrow\widehat{KCB}=\widehat{KCD}\)(2)
Từ(1) vả (2) ta có: \(\widehat{AKD}=\widehat{ADK};\widehat{BKC}=\widehat{BCK}\)suy ra tam giác AKD cân tại A và tam giác KBC cân tại B
\(\Rightarrow AK=AD;BK=BC\Rightarrow AK+BK=AD+BC\Rightarrow AB=AD+BC\)
Cm: a) Xét t/giác ADB và t/giác EDB
có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)
BD : chung
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> t/giác ADB = t/giác EDB (ch - gn)
=> AB = BE ; AD = ED (các cặp cạnh t/ứng)
+) AD = ED => D thuộc đường trung trực của AE
+) AB = BE => B thuộc đường trung trực của AE
mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE
b) Xét t/giác ADF và t/giác EDC
có: \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)
AD = DE (cmt)
\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)
=> t/giác ADF = t/giác EDC (g.c.g)
=> DF = DC (2 cạnh t/ứng)
c) Ta có: AD < DF (cgv < ch)
Mà DF = DC (cmt)
=> AD < DC
d) Xét t/giác ABC có AB > AC
=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)
=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)
hay \(\widehat{ICB}>\widehat{B_2}\)
=> BI > IC (quan hệ giữa góc và cạnh đối diện)
a) Xét tam giác vuông BED và tam giác vuông BAD ta có :
ABD = EBD ( BD là pg ABC )
BD chung
=> Tam giác BED = tam giác BAD ( ch-gn)
= >AD = DE( tg ứng)
b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :
AD = DE (cmt)
ADF = EDC ( đối đỉnh)
=> Tam giác AFD = tam giác EDC ( cgv-gn)
=> DF = DC (dpcm)
c) Xét tam giác vuông DEC có
DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)
Mà AD = DE (cmt)
=> AD < DC
d) chịu
Mình không vẽ hình nhé
a)Ta có: BC=\(4\sqrt{2}\)
Vậy BC=\(4\sqrt{2}\)
b)Xét hai tam giác vuông ADB và ADC có:
AB=AC( giả thiết)
\(\widehat{ABD}=\widehat{ACD}\)(giả thiết)
Do đó ADB=ADC( cạnh huyền - góc nhọn)
Suy ra DB=DC( hai cạnh tương ứng)
Mà \(D\in BC\)( giả thiết)
\(\Rightarrow\)D là trung điểm của BC
Vậy D là trung điểm của BC
c)Ta có ADB=ADC( cạnh huyền - góc nhọn)( chứng minh trên)
Suy ra \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)
Xét tam giác AED có:
\(\widehat{CAD}=45^0\)( chứng minh trên)
\(\widehat{AED}=90^0\left(DE⊥AC\right)\)
Do đó tam giác AED vuông cân tại E
Vậy tam giác AED vuông cân tại E
d) Vì D là trung điểm của BC
Suy ra BD=DC=\(\frac{4\sqrt{2}}{2}=2\sqrt{2}\)(cm)
Áp dung định lí Pi-ta-go vào tam giác ADC vuông tại D có
\(AD^2+DC^2=AC^2\)
hay \(AD^2=4^2-\left(2\sqrt{2}\right)^2\)
hay \(AD^2=16-8=8\)
\(\Rightarrow AD=\sqrt{8}\)(cm)
Vậy \(AD=\sqrt{8}\left(cm\right)\)