K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Đáp án A

Khi quay hình thang quanh AB , ta được khối tròn quay có thể tích băng thể tích hình trụ bán kính đáy AD , chiều cao CD trừ đi thể tích hình nón có bán kính đáy AD , chiều cao CE.

 

Dễ dàng tính được CE=1.

Ta có:

3 tháng 4 2019

Đáp án A

Lấy I là trung điểm CD. Thể tích vật tròn xoay là

π . π . π 2 + 1 3 π . π . π 2 = 4 3 π 4

NV
5 tháng 10 2021

Khi quay quanh CD sẽ tạo ra hình khối gồm 2 khối:

- Khối trụ chiều cao \(AB=a\) bán kính đáy \(r=AD=a\Rightarrow V_1=\pi.AB^2.AD^2=\pi a^3\)

- Khối nón chiều cao \(CH=\dfrac{1}{2}CD=a\) bán kính đáy \(BH=AD=a\Rightarrow V_2=\dfrac{1}{3}\pi.a^2.a=\dfrac{\pi a^3}{3}\)

\(\Rightarrow V=V_1+V_2=\pi a^3+\dfrac{\pi a^3}{3}=\dfrac{4\pi a^3}{3}\)

NV
5 tháng 10 2021

undefined

6 tháng 9 2018



5 tháng 3 2018

13 tháng 9 2017


Chọn C

2 tháng 12 2018


23 tháng 3 2017

13 tháng 8 2017

Chọn B

Ta có thể tích khối tròn xoay tạo thành bằng hiệu

thể tích hình trụ bán kính đáy AD, chiều cao

CD trừ cho thể tích nón đỉnh B, bán kính đáy

BM chiều cao CM.

Ta có:

17 tháng 1 2018

Chọn D