Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong sách nó vẽ dài dòng qua mình rút gọn lại .
Lời giải ...........................
Ta có :
\(TV\) // \(RS\)
\(TZ=ZR\) và \(VK=KS\)
\(\Rightarrow ZK=\dfrac{1}{2}\left(TV+RS\right)\)
\(\Rightarrow TV+RS=ZK:\dfrac{1}{2}\)
\(\Rightarrow TV+RS=2ZK\left(đpcm\right)\)
Kẻ ZY // TV (Y thuộc RV )
- Xét tam giác RTV CÓ :
ZY // TV
Z là trung điểm TR
Suy ra Y là trung điểm RV
Suy ra 2ZY = TV (*)
- Xét tam giác VRS có :
Y là trung điểm RV
K là trung điểm VS
Suy ra YK // RS
Suy ra 2YK = RS (**)
- Vì ZY // RS và YK // RS
Suy ra Z , Y , K thẳng hàng
Suy ra ZY + YK = ZK (***)
Từ (*) , (**) , (***)
Suy ra TV + RS = 2ZY + 2YK = 2(ZY +YK ) = 2ZK
Câu 1:
a: Xét ΔJOH vuông tại O và ΔING vuông tại N có
JH=IG
\(\widehat{JHO}=\widehat{IGN}\)
Do đó: ΔJOH=ΔING
SUy ra: HO=NG
=>HN=GO
b: Xét ΔIJH và ΔJIG có
JI chung
JH=IG
IH=JG
Do đó: ΔIJH=ΔJIG
Suy ra: \(\widehat{PIJ}=\widehat{PJI}\)
=>ΔPJI cân tại P
=>PI=PJ
Ta có PJ+PG=JG
PI+HP=IH
mà JG=IH
và PI=PJ
nên PG=PH
1)Xét tam giác PSQ có PD=DS(gt),PA=AQ(gt)
=>DA là đường trung bình của tam giác PSQ
=>DA//SQ,DA=1/2SQ(1)
Xét tam giác RSQ có RC=CS(gt),RB=BQ(gt)
=>CB là đường trung bình của tam giác RSQ
=>CB//SQ,CB=1/2SQ(2)
Từ (1) và (2)=> DA//CB,DA=CB
=>ABCD là hình bình hành(3)
Xét tam giác SPR coSD=DP(gt),SC=CR(gt)
=>DC là đường trung bình của tam giác SPR
=>DC//PR
Ta có PR vuông góc với SQ(gt)
Mà SQ//DA(cmt)
=>PR vuông góc với DA
Mặt khác DC//PR(cmt)
=>DC vuông góc với DA hay góc ADC=90(4)
Từ (3) và (4)=>ABCD là hình chứ nhật
2)
Xét tam giác BAC có BU=UA(gt), BV=VC(gt)
=>UV là đường trung bình của tam giác BAC
=>UV//AC, UV=1/2AC (1)
Xét tam giác DAC có DZ=ZA(gt),DT=TC(gt)
=>ZT là đường trung bình của tam giác DAC
=>ZT//AC, ZT=1/2AC (2)
Từ (1) và (2) => UV//ZT, UV=ZT
=>UVTZ là hình bình hành(3)
Xét tam giác ABD có AZ=ZD(gt),AU=UB(gt)
=>UZ là đường trung bình của tam giác ABD
=>UZ//BD, UZ=1/2BD
Ta có BD vuông góc với AC(gt)
Mà UV//AC
=>BD vuông góc với UV
Mà UZ//BD(cmt)
=> UZ vuông góc với UV hay góc VUZ=90(4)
Từ (3) và (4)=> UVTZ là hình chữ nhật(5)
Mặt khác UV=1/2AC(cmt), UZ=1/2BD
Mà AC=BD
=>UV=UZ(6)
Từ (5) và (6)=>UVTZ là hình vuông
Nga Phạm
Xét ΔPQS có PA/PQ=PD/PS
nên AD//QS và AD=1/2QS
Xét ΔRQS có RB/RQ=RC/RS
nên BC//QS và BC=1/2QS
=>AD//BC và AD=BC
Xét ΔQPR có QA/QP=QB/QR
nên AB//PR
=>AB vuông góc với QS
=>AB vuông góc với AD
=>ABCD là hình chữ nhật
xét tam giác MEN và tam giác PGN co :
ME=PG( giả thiết)
góc MEN=goc PGN (=90 độ)
EN=NG(GIẢ THIẾT)
DO đó tam giác MEN =tam giác PGN (c.g.c)
suy ra MN=PN(hai cạnh tương ứng) 1
Ta được :
PN=QP(2)
PQ=QM(3)
QM=MN(4)
Từ (1) (2) (3) (4) suy ra MN=PN=QP=MQ
Vậy MNPQ là hình thoi
bạn sử dụng đường tb vủa hình thang ý
tao sẽ có công thức ZK=\(\dfrac{TV+RS}{2}\) =>2ZK=TV+RS(DPCM)