Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thang ABCD có AB//CD, AB<CD, E, F lần lượt là trg điểm của AC, BD
Kéo dài EF cắt DC tại I
Tam giác ABF=IDF(gcg)~> F là trg điểm của AI và AB=DI~> EF=1/2 IC và DC-AB=IC~> đpcm
câu này dễ
Vẽ hình thang ABCD, AB song song với CD. Lấy M, N lần lượt là trung điểm của BD và AC. Lấy H và K lần lượt là trung điểm của BC và AD.
Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)
Hình thang ABCD có AB//CD, AB<CD, E, F lần lượt là trg điểm của AC, BD
Kéo dài EF cắt DC tại I
Tam giác ABF = IDF (gcg)
=> F là trung điểm của AI và AB = DI
=> EF = 1/2 IC và DC-AB=IC
=> đpcm
Lấy P và Q lần lượt là trung điểm của OB và OC.
Xét \(\Delta\)BOC có: D là trung điểm của BC; P là trung điểm của OB => DP là đường trung bình \(\Delta\)BOC
=> DP // OC và DP = 1/2.OC. Mà Q là trung điểm OC => DP // OQ và DP = OQ
Xét tứ giác DPOQ có: DP // OQ; DP = OQ => Tứ giác DPOQ là hình bình hành
=> ^DPO = ^DQO (1)
Xét \(\Delta\)BHO: ^OHB = 900; P là trung điểm OB => HP = OP = BP
Lại có: Tứ giác DPOQ là hbh (cmt) => OP = DQ => HP = DQ
Tương tự ta cũng có: DP = KQ
Mặt khác: HP = BP (cmt) => \(\Delta\)BHP cân tại P
Xét \(\Delta\)BHP cân đỉnh P có góc ngoài là ^HPO => ^HPO = 2.^HBP = 2.^ABO (2)
Tương tự: ^KQO = 2.^ACO (3)
Từ (2) và (3) kết hợp với ^ABO = ^ACO (gt) => ^HPO = ^KQO (4)
Từ (1) và (4) suy ra ^DPO + ^HPO = ^DQO + ^KQO => ^HPD = ^DQK
Xét \(\Delta\)PHD và \(\Delta\)QDK có: DP = KQ; HP = DQ; ^HPD = ^DQK => \(\Delta\)HPD = \(\Delta\)QDK (c.g.c)
=> HD = DK (2 cạnh tương ứng) => \(\Delta\)HDK cân ở D
Xét \(\Delta\)HDK cân đỉnh D có M là trung điểm cạnh HK => DM vuông góc HK (đpcm).
Xét hình thang ABCD có AB<CD có 2 đường chéo AC và BD
Gọi I là trung điểm của BD, E là trung điểm của AC
Ta cần chứng minh IE= 1/2 (DC-AB)
Gọi O là trung điểm của AD
Xét tam giác ACD có: O là trung điểm của AD và E là trung điểm của AC nên OE là đường trung bình của tam giác ADC
suy ra: OE= 1/2 DC
Tương tự, OI là đường trung bình của tam giác ABD nên OI =1/2 AB
Do đó: OE-OI = 1/2 (DC-AB)
Vậy IE =1/2 (DC-AB) (đpcm)