K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

Do ABCD là hình thang cân nên AD = BC, AC = BC, ˆD=ˆCD^=C^

Xét hai tam giác ADC và BCD, ta có:

         AD = BC (gt)

         DC chung

Nên  ∆ADC =  ∆BCD (c.c.c)

Suy ra ˆC1=ˆD1C1^=D1^

Do đó tam giác ECD cân tại E, nên EC = ED

Ta lại có: AC = BD suy ra EA = EB

Chú ý: Ngoài cách chứng minh  ∆ADC =  ∆BCD (c.c.c) ta còn có thể chứng minh  ∆ADC =  ∆BCD (c.g.c) như sau:

AD = BC, ˆD=ˆCD^=C^ , DC là cạnh chung.

bn ơi trả lời sai đề

hok tốt

5 tháng 2 2021

Xin cái hình vẽ luôn á

8 tháng 8 2016

Tham khảo nha

 Xét tứ giác AEDO có góc A và D vuông=> AEDO nội tiếp đường tròn 
=>góc AED+góc AOD=180(2 góc đối nhau) (1) 
góc B chắn cung AD=> góc AOD=2*góc ABD mà tam giác ABI cân tại I nên góc ABD = góc BAC = 1/2 góc AOD=>góc ABD+BAC=AOD. Vì góc AID kề bù với góc AIB=> gócAID+góc AIB=180=AIB+ABD+BAC=AIB+AOD=>góc AID= góc AOD 
từ (1)=> góc AED+góc AID=180(đpcm) 

28 tháng 8 2016

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB

 

25 tháng 3 2022

-Sửa đề: F là giao của AC và BD.

EF cắt AB, CD lần lượt tại H,K.

\(\dfrac{AH}{BK}=\dfrac{AE}{BE}=\dfrac{AB}{DC}=\dfrac{BE}{CE}=\dfrac{BH}{CK}\)

\(\Rightarrow\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{AB}{DC}\left(1\right)\)

\(\dfrac{AH}{CK}=\dfrac{AF}{CF}=\dfrac{AB}{CD}=\dfrac{BF}{DF}=\dfrac{BH}{DK}\)

\(\Rightarrow\dfrac{AH}{CK}=\dfrac{BH}{DK}=\dfrac{AB}{CD}\left(2\right)\)

-Từ (1) và (2) \(\Rightarrow\dfrac{AH}{CK}=\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{BH}{DK}\)

\(\Rightarrow AH=BH;CK=DK\)

\(\Rightarrow\)H là trung điểm AB, K là trung điểm CD.

11 tháng 8 2020

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: ∠(ADC) = ∠(BCD) (gt)

⇒ ∠(ODC) = ∠(OCD)

⇒ΔOCD cân tại O (dhnb tam giác cân)

⇒ OC = OD

OB + BC = OA + AD

Mà AD = BC (hình thang ABCD cân)

⇒ OA = OB

Xét ΔADC và. ΔBCD:

AD = BC (hình thang ABCD cân )

AC = BD (hình thang ABCD cân)

CD chung

Do đó ΔADC và ΔBCD (c.c.c)

⇒ ∠D1= ∠C1

⇒ΔEDC cân tại E (dhnb tam giác cân)

⇒ EC = ED nên E thuộc đường trung trực CD

OC = OD nên O thuộc đường trung trực CD

E ≠ O. Vậy OE là đường trung trực của CD.

Ta có: BD= AC (hình thang ABCD cân)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

Mà OA = OB (cmt)

Nên O thuộc đường trung trực của AB

E ≠ O. Vậy OE là đường trung trực của AB.

29 tháng 6 2017

Hình thang cân