Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề này có trong đề thi hsg cấp tỉnh lớp 9 tỉnh mình mà cho số đo cụ thể thôi
Sữa đề: hình thang cân
CM: Vẽ đường trung bình EF
Từ B kẻ đường thẳng song song AC cắt đường thẳng CD tại K.
Gọi giao AC và BD là I
CMR: ABKC là hình bình hành
Suy ra: AB=CK
Do đó: DK=CD+CK=AB+CD
Mà đường trung bình EF: \(EF=\frac{AB+CD}{2}\)
Suy ra: \(EF=BH=\frac{1}{2}DK\)(1)
Vì ABCD là hình thang cân nên: \(AC=BD\)
\(\Leftrightarrow BK=BD\)(do ACKB là hbh)
Nên tam giác BKD cân tại B có BH là đg cao
Suy ra BH là đường trung tuyến (2)
Từ (1) và (2)
DBK vuông tại B
Suy ra: \(\widehat{BDK}+\widehat{BKD}=90\)
Mà \(\widehat{BDK}=\widehat{ABD}\)
và \(\widehat{BKD}=\widehat{BAC}\)
Nên tam giác ABI vuông tại I
Vậy BD vuông góc AC