Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(DC=2AB=2.6=12\left(cm\right)\)
\(\Rightarrow S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(6+12\right).4}{2}=36\left(cm^2\right)\)
b, Xét ΔAHD và ΔBKC có :
\(\widehat{AHD}=\widehat{BKC}=90^0\)
\(\widehat{D}=\widehat{C}\left(ABCD\cdot là\cdot hình\cdot thang\cdot cân\right)\)
\(\Rightarrow\Delta AHD\sim\Delta BKC\left(g-g\right)\)
c, Ta có : \(\Delta AHD\sim\Delta BKC\left(cmt\right)\)
\(\Rightarrow\dfrac{AH}{BK}=\dfrac{AD}{BC}\)
\(\Rightarrow AH.BC=AD.BK\left(đpcm\right)\)
a: DC=6*2=12cm
S ABCD=1/2(AB+CD)*AH
=1/2*4*(6+12)=2*18=36cm2
b: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
góc D=góc C
=>ΔAHD đồng dạng với ΔBKC
c: ΔAHD đồng dạng với ΔBKC
=>AD/BC=AH/BK
=>AH*BC=AD*BK
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
\(7,\)
\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)
\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)
\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
Vậy \(BEFC\) là hình thang cân
a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
=>ΔAHD=ΔBKC