K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

Qua O kẻ \(OH\perp AB\left(H\in AB\right)\) \(;OK\perp CD\left(K\in CD\right)\)

Do \(AB//CD\) nên \(O,H,K\) thẳng hàng.

Ta có:

\(AB//CD\rightarrow\frac{AB}{CD}=\frac{OA}{OC}=\frac{OB}{OD}\)

\(AH//KC\rightarrow\frac{OA}{OC}=\frac{OH}{OK}\)

\(\rightarrow\frac{OH}{OK}=\frac{AB}{CD}\)

\(\frac{S_{OAB}}{S_{OCD}}=\frac{\frac{1}{2}OH.AB}{\frac{1}{2}OK.CD}=\frac{OH.AB}{OK.CD}=\left(\frac{OH}{OK}\right)^2\)

\(\rightarrow\left(\frac{OH}{OK}\right)^2=\frac{64}{125}=\frac{OH}{OK}=\frac{8\sqrt{5}}{25}\)

\(\frac{S_{AOD}}{S_{DOC}}=\frac{AO}{OC}=\frac{OH}{OK}=\frac{8\sqrt{5}}{25}\rightarrow S_{AOD}=50\sqrt{5}\left(cm^2\right)\)

10 tháng 1 2017

k rồi giải cho

10 tháng 1 2017

bài khó vậy mik mới lớp 6

27 tháng 5 2020

Đúng 100 :)

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có

BA/AD=AD/DC

=>ΔBAD đồng dạng với ΔADC

b: ΔBAD đồng dạng với ΔADC

=>góc BDA=góc ACD

Xét ΔOAD và ΔDAC có

góc ODA=góc DCA

góc A chung

=>ΔOAD đồng dạng với ΔDAC

=>góc AOD=góc ADC=90 độ

=>AC vuông góc BD tại O

c: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81

 

2 tháng 6 2018

Kẻ AH DC; OK DC tại H, K suy ra AH // OK

Chiều cao của hình thang: AH = 2 S A B C D A B + C D = 2.48 4 + 8 = 8  (cm)

Vì AB // CD (do ABCD là hình thang) nên theo định lý Ta-lét ta có

O C O A = C D A B = 8 4 = 2 ⇒ O C O A + O C = 2 2 + 1 ⇒ O C A C = 2 3

Vì AH // OK (cmt) nên theo định lý Ta-lét cho tam giác AHC ta có:

O K A H = O C A C = 2 3  => OK = 2 3 AH => OK = 2 3 .6 = 4(cm)

Do đó S C O D = 1 2 OK.DC = 1 2 . 16 3 .8 = 64 3 c m 2

Đáp án: A

12 tháng 5 2017

Kẻ AH DC; OK DC tại H, K suy ra AH // OK

Chiều cao của hình thang: AH = 2 S A B C D A B + C D = 2.36 4 + 8 = 6  (cm)

Vì AB // CD (do ABCD là hình thang) nên theo định lý Ta-lét ta có

O C O A = C D A B = 8 4 = 2 ⇒ O C O A + O C = 2 2 + 1 ⇒ O C A C = 2 3

Vì AH // OK (cmt) nên theo định lý Ta-lét cho tam giác AHC ta có:

O K A H = O C A C = 2 3 => OK = 2 3 AH => OK = 2 3 .6 = 4(cm)

Do đó S C O D = 1 2 OK.DC = 1 2 .4.8 = 16cm2

Đáp án: C

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔCOD cân tại O