Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAB và ΔEMD có
góc EAB=góc EMD
góc AEB=góc MED
=>ΔEAB đồng dạng vơi ΔEMD
=>EM/EA=AB/MD=AB/MC
Xet ΔFAB và ΔFCM có
góc FAB=góc FCM
góc AFB=góc CFM
Do đó: ΔFAB đồng dạng với ΔFCM
=>FB/FM=AB/CM
=>FM/FB=CM/AB=DM/AB=ME/EA
=>EF//AB
b: Xet ΔBMC có FN//MC
nên FN/MC=BN/BC
=>FN/MD=AH/AD
Xét ΔADM có HE//DM
nên HE/DM=AH/AD
Xét ΔBDC có EN//DC
nên EN/DC=BN/BC=AH/AD
=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD
=>(EF+FN)/2=HE=FN
=>EF+FN=2FN
=>FN=EF=HE
có m là trđ của cd rồi lại còn ef cắt bc tại m
a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)
xét tam giác MFC có MC // AB (gt) => MF/FB = CM/AB (đl)
có DM = CM do M là trung điểm của CD (gt)
=> ME/AE = MF/FB xét tam giác ABM
=> EF // AB (đl)
b, gọi EF cắt AD;BC lần lượt tại P và Q
xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)
xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)
xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)
=> PE/AB = EF/AB
=> PE = EF
tương tự cm được FQ = EF
=> PE = EF = FQ
c, Xét tam giác DAB có PE // AB => PE/AB = DP/DA (đl)
xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl)
=> PE/AB + PE/DM = DP/AD + AP/AD
=> PE(1/AB + 1/DM) = 1 (1)
xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)
xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)
=> EF/AB + EF/DM = MF/MB + BF/BM
=> EF(1/AB + 1/DM) = 1 (2)
xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)
xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)
=> FQ/AB + FQ/MC = CQ/BC + BQ/BC
có MC = DM (câu a)
=> FQ(1/AB + 1/DM) = 1 (3)
(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3
=> PQ(1/AB + 1/DM) = 3
DM = 1/2 CD = 6
đến đây thay vào là ok
Hình bên dưới nha.
Giải thích các bước giải:
M;N lần lượt là trung điểm của AD,BCM;N lần lượt là trung điểm của AD,BC
⇒MN là đường trung bình của hình thang ABCD⇒MN là đường trung bình của hình thang ABCD
⇒MN=2+52=3,5;MN//AB//CD⇒MN=2+52=3,5;MN//AB//CD
MN//AB⇒ME//AB mà M là trung điểm ABMN//AB⇒ME//AB mà M là trung điểm AB
⇒ME là đường trung bình của ΔABD⇒ME là đường trung bình của ΔABD
⇒ME=AB2=1⇒ME=AB2=1
:Chứng minh tương tự:NF là đường trung bình của ΔACB:Chứng minh tương tự:NF là đường trung bình của ΔACB
⇒NF=AB2=1⇒NF=AB2=1
⇒EF=MN−ME−MF=3,5−1−1=1,5⇒EF=MN−ME−MF=3,5−1−1=1,5
Vậy EF=1,5Vậy EF=1,5
a:Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔDAB có
M là trung điểm của AD
ME//AB
Do đó: E là trung điểm của BD
Xét ΔABC có
N là trung điểm của BC
NF//AB
Do đó: F là trung điểm của AC
a: Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔADC có
M là trung điểm của AD
MF//DC
Do đó: F là trung điểm của AC
Xét ΔBDC có
N là trung điểm của BC
NE//DC
Do đó: E là trung điểm của BD
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
a: Xét ΔEAB và ΔECM có
\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)
\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)
Do đó: ΔEAB đồng dạng với ΔECM
=>\(\dfrac{EA}{EC}=\dfrac{EB}{EM}=\dfrac{AB}{CM}\)
=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=AB:\dfrac{CD}{2}=2\cdot\dfrac{BA}{CD}\)
b: Xét ΔFAB và ΔFMD có
\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)
\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)
Do đó: ΔFAB đồng dạng với ΔFMD
=>\(\dfrac{FA}{FM}=\dfrac{FB}{FD}=\dfrac{AB}{MD}\)
Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)
\(\dfrac{EB}{EM}=\dfrac{AB}{CM}\)
mà MD=MC
nên \(\dfrac{FA}{FM}=\dfrac{EB}{EM}\)
=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
nên FE//AB
Ta có: FE//AB
AB//CD
Do đó: FE//CD
c: Xét ΔADM có HF//DM
nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)
Xét ΔBDM có FE//DM
nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
Xét ΔBMC có EG//MC
nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)
mà \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
và MC=MD
nên FE=EG
Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)
=>\(\dfrac{FM}{FA}=\dfrac{EM}{BE}\)
=>\(\dfrac{FM}{FA}+1=\dfrac{EM}{BE}+1\)
=>\(\dfrac{FM+FA}{FA}=\dfrac{EM+BE}{BE}\)
=>\(\dfrac{AM}{FA}=\dfrac{BM}{BE}\)
=>\(\dfrac{AF}{AM}=\dfrac{BE}{BM}\)
mà \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\) và \(\dfrac{BE}{BM}=\dfrac{FE}{DM}\)
nên HF=FE
mà FE=EG
nên HF=FE=EG
xét tg ADH và tg BCK có: ^AHD=^BKC=90 ; AD=BC( vì tg ABCD là hthang cân); ^ADH =^BCK (vì tg ABCD là hthang cân)
=> tg ADH=tg BCK (ch-gn) => DH=CK
b) xét hthang ABCD có: M là t/đ của AD(gt) và N là t/đ của BC(gt)=> MN là đg trung bình của hthang ABCD => MN//AB//CD
và MN= 1/2.(AB+CD)=> MN= 1/2.(4+10)==7 (cm)
xét tg ABC có: N là t/đ của Bc(gt) ; NF//AB( vì F thuộc MN ; MN//AB) => F là t/đ của AC=> NF la đg trung bình của tg ABC
=> NF=1/2.AB=1/2.4=2(cm)
c/m tương tự ta đc: ME=2cm
ta có: MN=ME+EF+FN ( vì E,F thuộc MN)
=> 7 =2+EF+2 => EF=3 (cm)
Vậy độ dài cạnh EF là 3cm