K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADC và ΔBCD có

AD=BC

góc ADC=góc BCD

DC chung

=>ΔADC=ΔBCD

=>góc IDC=góc ICD

=>ID=IC

b: Xét ΔKDC có AB//DC

nên KA/AD=KB/BC

mà AD=BC

nên KA=KB

ID+IB=BD

IC+IA=AC

mà BD=AC và ID=IC

nên IB=IA

KA=KB

IA=IB

=>KI là trung trực của AB

28 tháng 8 2016

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB

 

a: Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{IDC}=\widehat{ICD}\)

Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)

nên ΔIDC cân tại I

31 tháng 8 2021

Cảm ơn nhaa <3

22 tháng 6 2023

2)

Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)

\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)

Mà AB // ED (gt)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

=> CA là tia phân giác của góc C.

18 tháng 9 2021

Tham khảo a làm rồi nha: https://hoc24.vn/cau-hoi/.1904701261424 

20 tháng 9 2021

em cảm ơn ạ!

 

31 tháng 8 2017

 1] 
a] 

Ta có: 
AI/IM = AB/DM 
BK/KM = AB/MC 

Do DM =MC 
=> AI/IM = BK/KM 

=> IK//AB 

b] 
IE/DM = AI/AM 
KF/MC = BK/BM 

Mà AI/AM = BK/BM (do IK//AB) 

=> IE/DM = KF/MC mà DM=MC 
=> IE = KF 

2] 
a} 
Ta có: 
AE/EK = AB/DK 
BF/FI = AB/CI 
Do ABID và ABCK là h..b.hành 
=> CK=DI =AB 
=> DK = CI = CD -AB 
=> AE/EK = NF/FI 

=> EF//AB 

b} 

Ta có EF/CK =AF/AC = AB/CD 
=> EF.CD = CK.AB = AB^2 (do CK =AB) 

3] 
a} 
Ta có: 
MB/MF = MC/MA (Xét BC//AF) 
ME/MB = MC/MA (Xét CE//AB) 

=> MB/MF = ME/MB 
=> MB^2 = ME.MF 

b} 

BM/MF = MC/AC (Xét BC//AF) 
BM/ME = AM/AC (Xét CE//AB) 

=> BM/MF + BM/ME = MC/AC + AM/AC =1 

=> BM/MF + BM/ME =1 

=> 1/BF+1/BE=1/BM