K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Đường cao BH

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔBDC\(\sim\)ΔHBC

b: Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:

\(DC^2=BD^2+BC^2\)

\(\Leftrightarrow BD^2=25^2-15^2=400\)

hay BD=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:

\(\left\{{}\begin{matrix}BD^2=HD\cdot DC\\BC^2=HC\cdot DC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HD=16\left(cm\right)\\HC=9\left(cm\right)\end{matrix}\right.\)

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

=>ΔBDC đồng dạng vói ΔHBC

b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)

HC=15^2/25=9cm

HD=25-9=16cm

a) Xét ΔBDC vuông tại B và ΔHBC vuông tại H có 

\(\widehat{HCB}\) chung

Do đó: ΔBDC\(\sim\)ΔHBC(g-g)

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

\(\widehat{BCD}\) chung

Do đó: ΔBDC~ΔHBC

b: ta có ΔBDC~ΔHBC

=>\(\dfrac{CB}{CH}=\dfrac{CD}{CB}\)

=>\(CB^2=CH\cdot CD\)

c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

\(\widehat{ADK}=\widehat{BCH}\)

Do đó;ΔAKD~ΔBHC

d: ΔBDC vuông tại B

=>\(BC^2+BD^2=DC^2\)

=>\(BD^2=25^2-15^2=400\)

=>\(BD=\sqrt{400}=20\left(cm\right)\)

Xét ΔBDC vuông tại B có BH là đường cao

nên \(\left\{{}\begin{matrix}DH\cdot DC=DB^2\\CH\cdot CD=CB^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}DH\cdot25=20^2=400\\CH\cdot25=15^2=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=16\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\)

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

\(\widehat{BCD}\) chung

Do đó: ΔBDC~ΔHBC

b: ta có ΔBDC~ΔHBC

=>\(\dfrac{CB}{CH}=\dfrac{CD}{CB}\)

=>\(CB^2=CH\cdot CD\)

c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

\(\widehat{ADK}=\widehat{BCH}\)

Do đó;ΔAKD~ΔBHC

d: ΔBDC vuông tại B

=>\(BC^2+BD^2=DC^2\)

=>\(BD^2=25^2-15^2=400\)

=>\(BD=\sqrt{400}=20\left(cm\right)\)

Xét ΔBDC vuông tại B có BH là đường cao

nên \(\left\{{}\begin{matrix}DH\cdot DC=DB^2\\CH\cdot CD=CB^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}DH\cdot25=20^2=400\\CH\cdot25=15^2=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=16\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\)

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có 

\(\widehat{C}\) chung

Do đo:ΔBDC\(\sim\)ΔHBC

b: Ta có: ΔBDC\(\sim\)ΔHBC

nên BC/HC=DC/BC

hay \(BC^2=HC\cdot DC\) 

12 tháng 5 2022

a, Xét Δ BDC và Δ HBC, có :

\(\widehat{DBC}=\widehat{BHC}=90^o\)

\(\widehat{BCD}=\widehat{HCB}\) (góc chung)

=> Δ BDC ∾ Δ HBC (g.g)

b, Ta có : Δ BDC ∾ Δ HBC (cmt)

=> \(\dfrac{DC}{BC}=\dfrac{BC}{HC}\)

=> \(\dfrac{10}{6}=\dfrac{6}{HC}\)

=> \(HC=\dfrac{6.6}{10}\)

=> HC = 3,6 (cm)

Ta có : DC = DH + HC

=> 10 = DH + 3,6

=> DH = 6,4 (cm)

12 tháng 5 2022

c, Ta có : Δ BDC ∾ Δ HBC (cmt)

=> \(\dfrac{BC}{HC}=\dfrac{BD}{HB}\)

Xét Δ DHB và Δ BHC, có :

\(\widehat{DHB}=\widehat{BHC}=90^o\)

\(\dfrac{BC}{BD}=\dfrac{HC}{HB}\) (cmt)

=> Δ DHB ∾ Δ BHC (c.g.c)

=> \(\dfrac{DH}{BH}=\dfrac{HB}{HC}\)

=> \(HB^2=DH.HC\)