K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C
Do đó: ΔAED=ΔBFC

Suy ra: DE=CF

Bài 2: 

b: Xét ΔBAD và ΔABC có

AB chung

AD=BC

BD=AC

Do đó: ΔBAD=ΔABC

Suy ra: góc EAB=góc EBA

=>ΔEAB cân tại E

=>EA=EB

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH. a) Chứng minh rằng CH=DK. b) Tính độ dài BH.Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.a) Chứng minh rằng BD vuông góc với BC. b) Tính chu vi hình thang.Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.

Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH=DK.

b) Tính độ dài BH.

Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.

a) Chứng minh rằng BD vuông góc với BC.

b) Tính chu vi hình thang.

Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.

a) Chứng minh tam giác OMN và OPQ cân tại O.

b) Chứng minh tứ giác MNPQ là hình thang cân.

c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.

Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.

a) Chứng minh rằng ΔOAB cân.

b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.

c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.

1

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

a) Vì ABCD là hình thang cân 

=> AD = BC

=> ADC = BCD 

=> AC = BD 

=> DAB = CBA 

Xét ∆ADC và ∆BCD ta có : 

AD = BC 

ADC = BCD 

DC chung 

=> ∆ADC = ∆BCD (c.g.c)

=> BDC = ACD ( tương ứng) 

=> ∆DOC cân tại O.

b) Mà DAB + BAE = 180° ( kề bù) 

ABC + ABE = 180° ( kề bù )

Mà DAB = CBA 

=> EAB = EBA 

=> ∆EAB cân tại E 

Gọi giao điểm AB và EO là H

EO và DC là G

Mà AB//CD 

=> BAC = ACD ( so le trong) 

=> ABD = ACD ( so le trong) 

Mà ACD = BDC 

=> CAB = ABD 

=> ∆ABO cân tại O 

=> EO là trung trực và là phân giác ∆AOB 

=> AOH = BOH ( phân giác )

Mà AOH = COG ( đối đỉnh) 

BOH = DOG ( đối đỉnh) 

Mà AOH = BOH ( EO là phân giác) 

=> OG là phân giác DOC 

Mà ∆DOC cân tại O

=> OG là trung trực DC

Hay EO là trung trực DC

d: OA+OC=AC

OB+OD=BD

mà OA=OC và AC=BD

nên OC=OD

OC=OD

EC=ED

=>OE là trung trực của CD

=>O,E,trung điểm của CD thẳng hàng

26 tháng 7 2018

a, ABCD là hình thang cân(gt) nên AC=BD và AD =BC

Tam giác ADC = Tam giác BCD (c.c.c)

b, Từ ý a suy ra: góc ACD = góc BDC hay góc ECD = góc EDC

Mà góc BAE = góc ECD và góc ABE = góc EDC 

Do đó: góc BAE = góc ABE nên tam giác BAE cân tại E

Vậy EA = EB

31 tháng 12 2018

a, ABCD là hình thang cân(gt) nên AC=BD và AD =BC

Tam giác ADC = Tam giác BCD (c.c.c)

b, Từ ý a suy ra: góc ACD = góc BDC hay góc ECD = góc EDC

Mà góc BAE = góc ECD và góc ABE = góc EDC 

Do đó: góc BAE = góc ABE nên tam giác BAE cân tại E

Vậy EA = EB

Bài 1: 
Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó:ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E