Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Vì ABCD là hình thang cân
`=> AD = BC`
Có `AB = AD`
`=> BC = AB`
`b)`
Có `AB = AD`(GT)
`=>` tam giác `ABD ` cân
`=>` góc ADB = góc ABD 2
Vì `ABCD` là hình thang cân nên :
`AB//DC`
`=>` góc ABD = góc BDC 1
từ `(1); (2) =>` góc ADB = góc BDC
`=>` BD là pg cưa góc ADC
a: ABCD là hình thang cân
=>AD=BC
mà AD=AB
nên AB=BC
b: góc ABD=góc ADB
góc ABD=góc BDC
=>góc ADB=góc BDC
=>DB là phân giác của góc ADC
Vẽ tia Bx song song với AD và gọi AD giao với DC la E
Ta có: BE song song với AD
AB song song với DE
=)AB=DE ; AD=BE
BE+BC>EC (bất đẳng thức tam giác)
=)AD+BC>DC-DE =)AD+BC>DC-AB
Gọi K là giao điểm của AD và BC
\(\Rightarrow\) Tam giác KDC vuông tại K (do D+C=90) hay tam giác KAB vuông tại K
Gọi F là giao điểm của KM với CD
Áp dụng định lý Thales có:
\(\dfrac{AM}{DF}=\dfrac{KM}{KF}\)
\(\dfrac{KM}{KF}=\dfrac{MB}{FC}\)
\(\Rightarrow\dfrac{AM}{DF}=\dfrac{MB}{FC}\) mà AM=MB \(\Rightarrow DF=FC\)
\(\Rightarrow\) F là trung điểm của DC mà N cũng là tđ của DC
\(\Rightarrow F\equiv M\)
\(\Rightarrow\) K;M;N thẳng hàng
Áp dụng định lý Thales có:
\(\dfrac{KM}{KN}=\dfrac{AM}{DN}\Rightarrow\dfrac{KM}{AM}=\dfrac{KN}{DN}=\dfrac{KN-KM}{DN-AM}=\dfrac{MN}{\dfrac{1}{2}\left(DC-AB\right)}=\dfrac{2MN}{DC-AB}\)
Do đó \(\dfrac{KM}{AM}=\dfrac{2MN}{DC-AB}\)
Do M là tđ của AB mà tam giác KAB vuông tại K \(\Rightarrow KM=\dfrac{1}{2}AB\)
Lại có: \(AM=\dfrac{1}{2}AB\Rightarrow KM=AM\)\(\Rightarrow\dfrac{2MN}{DC-AB}=1\)
\(\Rightarrow MN=\dfrac{DC-AB}{2}\) (đpcm)
a: Xét tứ giác ABED có
AB//ED
AD//BE
Do đó: ABED là hình bình hành
Suy ra: AD=BE và AB=DE
Áp dụng bất đẳng thức tam giác nha bạn!
MK K PT BN A