K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D P Q M N 6 cm 10 cm

a)

Vì AP = PD 

    BQ = QC

=> PQ là đường trung bình của hình thang ABCD

mà đường chéo BD và AC cắt PQ tại M và N

=> M là trung điểm của BD và N là trung điểm của PQ

Xét tam giác ADB có 

AP = PD 

BM = MD 

=> PM là đùng trung mình của tam giác ADB

=> PM = \(\frac{1}{2}AB\)( 1 )

Xét tam giác ACB có :

BQ = QC 

AN = CN 

=> QN là đường trung bình của tam giác ACB

=> QN = \(\frac{1}{2}AB\)( 2 )

Từ ( 1 ) và ( 2 ) => PM = QN

b) 

Vì PQ là đùng trung bình của hình thang ABCD 

\(\Rightarrow PQ=\frac{AB+DC}{2}=\frac{6+10}{2}=8\)

Vậy PQ = 8 cm 

Study well 

27 tháng 1 2016

http://olm.vn/hoi-dap/question/403903.html

27 tháng 1 2016

http://olm.vn/hoi-dap/tag/Toan-lop-8.html

a: Xét ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

4 tháng 11 2021

ok bạn nhiều

19 tháng 3 2020

I A B D C E F K

Gọi I là trung điểm của AB.

Giả sử đường thẳng IE cắt CD tại K1 

Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD

Giả sử đường thẳng IF cắt CD tại K2

Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD 

do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau

Vậy ta có đpcm

19 tháng 3 2020

Bạn ơi gọi luôn I là trung điểm AB thì sai r

26 tháng 8 2021

Xét hình thang ABCD (AB//CD) có:

AM=MD=12AD

BN=NC=12BC

⇒MN⇒MN là đường trung bình

⇒ \(\hept{\begin{cases}MN=(AB+CD)/2=3AB/2\\MN//AB//CD\end{cases}} \)

Xét △ABD có:

AM=MD=12AD

AP//AB

⇒AP=12AB       (1)

Xét △ABC có:

BN=NC=12BC

NQ//AB

⇒NQ=12AB(2)

Ta lại có:

MP+PQ+QN=MN

⇔PQ=MN−MP−NQ

⇔PQ=3AB2−12AB−12AB

⇔PQ=12AB(3)

Từ (1)(2)(3)⇒MP=PQ=QN

19 tháng 3 2020

Ý (b) câu hỏi là gì vậy?

19 tháng 3 2020

Ý b câu hỏi là : Chứng minh EF đi qua trung điểm của AB và CD