Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé!
Kẻ OH vuông góc với AB và CD. Ta có: diện tích tam giác AMQ + diện tích tam giác QPD = OH ( AB / 2 + CD / 2 ) / 2
Chứng minh tương tự diện tích tam giác MBN + diện tích tam giác NCP = OH ( AB / 2 + CD / 2 ) / 2
=> Diện tích hình tứ giác MNPQ = diện tích hình chữ nhật ABCD - diện tích tam giác AMQ - diện tích tam giác QPD - diện tích tam giác MPN - diện tích tam giác NCP = 240 - 1/2 . 240 = 120 m2
Đáp số: 120 m2
nhớ k đó
Kẻ OH vuông góc với AB và CD , Ta có S AMQ + S QPD = OH ( AB/2 + CD/2) / 2
C/m tương tự S MBN + S NCP = OH( AB/2 + CD/2) /2
=> S MNPQ = S ABCD - S AMQ - S QPD - S MPN - S NCP = 60 - 1/2 . 60 = 30
Đáp án:Giải thích các bước giải:
MQ kéo dài cắt DC tại F : MN kéo dài cắt DC tại E
ta có diện tích ABCD=diện tích tam giác FME
diện tích tam giác MPF = diện tích tam giác MPE
(đáy bằng nhau , chung đường cao)
diện tích tam gics MNP=diện tích tam giác NPE
(đáy MN=NE, chung đường cao)
Nên diện tích MNPQ=1/2 diện tích tam giác FME
hay diện tích tứ giác MNPQ=1/2 diện tích hình thang ABCD
và = FE : 60:2=30 cm2 thấy bạn đang gấp mk giải luôn hộ
Vì bốn điểm M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA nên diện tích hình thang ABCD gấp đôi diện tích tứ giác MNPQ và bằng: 115 x 2 = 230 (cm2)
diện tích hình thang là : 115 x 2 = 230 ( cm2)
mình đã thi vio rồi
S_AMD = \(\frac{1}{3}\) ABD (Chung chiều cao từ D, đáy AM = \(\frac{1}{3}\) AB)
Tương tự S_ BCP =\(\frac{1}{3}\) BCD. Mà S_(ABD + BCP) = S_ABCD => S_(AMD + BCP) = \(\frac{1}{3}\) ABCD
Nên S_MBPD = \(\frac{2}{3}\) ABCD => S_MPQ = \(\frac{1}{2}\) MPD (chung đường cao từ M đáy DP mà DQ = \(\frac{1}{2}\) DP)
Tương tự MNP = \(\frac{1}{2}\) MBP. Mà MBP + MPD = S_MBPD => S_(MPQ+MNP) = \(\frac{1}{2}\) S_MBPD
Hay S_MNPQ = \(\frac{1}{2}\) MBPD Mà MBPD = \(\frac{2}{3}\) ABCD
=> S_MNPQ = \(\frac{2}{3}.\frac{1}{2}\) ABCD = \(\frac{1}{3}\) ABCD
Vậy S_MNPQ = 480 : 3 = 160 (cm2)
BẠN VẼ HÌNH ĐI !!!!!