K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

a, Do CD//AB, DM//BD nên ta dễ thấy: tam giác DMC đồng dạng với tam giác BCA(g.g)
\(\frac{MC}{CA}=\frac{CD}{AB}=\frac{AF}{AB}\) ( vì ADCF là hình bình hành nên CD=AF) (1)
Ta lại có: FP//AC nên:\(\frac{CP}{CB}=\frac{AF}{AB}\) (2)
Từ (1),(2) ta có: \(\frac{CM}{CA}=\frac{CP}{CB}\)
Theo định lí Talet đảo ta có: MP//AB
b, Gọi N, N' là giao điểm của MP,DB với CF
Ta có:\(\frac{CN}{CF}=\frac{CM}{CA}=\frac{CD}{AB}\) ( theo phần a,)
\(\frac{CN'}{N'F}=\frac{CD}{FB}\)suy ra \(\frac{AN'}{CF}=\frac{CD}{\left(FB+CD\right)}=\frac{CD}{AB}\) ( vì CD=AF)
Vậy CN=CN' nên N' trùng N
Từ đó ta suy ra: MP,CF,DB đồng quy

27 tháng 11 2019

sai

 

29 tháng 3 2022

a, Do CD//AB, DM//BD nên ta dễ thấy: tam giác DMC đồng dạng với tam giác BCA(g.g)
➞ MCCA=CDAB=AFABMCCA=CDAB=AFAB ( vì ADCF là hình bình hành nên CD=AF) (1)
Ta lại có: FP//AC nên:CPCB=AFABCPCB=AFAB (2)
Từ (1),(2) ta có: CMCA=CPCBCMCA=CPCB
Theo định lí Talet đảo ta có: MP//AB
b, Gọi N, N' là giao điểm của MP,DB với CF
Ta có:CNCF=CMCA=CDABCNCF=CMCA=CDAB ( theo phần a,)
CN′N′F=CDFBCN′N′F=CDFBsuy ra AN′CF=CD(FB+CD)=CDABAN′CF=CD(FB+CD)=CDAB ( vì CD=AF)
Vậy CN=CN' nên N' trùng N
Từ đó ta suy ra: MP,CF,DB đồng quy

21 tháng 3 2020

F A D C P B M

23 tháng 3 2020

a) Do CD // AB, DM // BD nên ta dễ thấy : \(\Delta DMC\)đồng dạng với \(\Delta MCA\left(g.g\right)\)

\(\Rightarrow\frac{MC}{CA}=\frac{CD}{AB}=\frac{AF}{AB}\)( vì ADCF là hình bình hành nên CD = AF ) (1)

Lại có : FP // AC nên : \(\frac{CP}{CB}=\frac{AF}{AB}\left(2\right)\)

Từ (1) và (2) => \(\frac{CM}{CA}=\frac{CP}{CB}\)

Theo định lí Ta-let đảo, ta có : MP // AB

b) Gọi N và N' là giao điểm MP,DB với CF

Ta có : \(\frac{CN}{CF}=\frac{CM}{CA}=\frac{CD}{AB}\)(ở phần a)

\(\frac{CN'}{N'F}=\frac{CD}{FB}\Rightarrow\frac{AN'}{CF}=\frac{CD}{\left(FB+CD\right)}=\frac{CD}{AB}\)( vì CD = AF )

Vậy CN = CN' nên N' trùng N

Từ đó, ta suy ra được : MP, CF, DB đồng quy

21 tháng 4 2020

Chưa làm đc à. Giống mình giúp với :((

21 tháng 4 2020

AD // CF ---> AFCD là hbh ---> AF = CD 
DK // BC ---> DKBC là hbh ---> BK = CD 
---> AB-AF = AB-BK hay FB = AK (1) 
AM // FB ---> ^MAK = ^PFB (góc đồng vị) (2) 
MK // PB ---> ^MKA = ^PBF (góc đồng vị) (3) 
(1),(2),(3) ---> 2 t/g MAK và PFB bằng nhau (gcg) ---> MA = PF (4) 
Mà AC // PF ---> MA // PF (5) 
(4),(5) ---> MAFB là hbh ---> MP // AF ---> MP // AB 

b) 
Gọi Q là giao điểm của MP và CF, B' là giao điểm của DQ và AB ---> B và B' nằm cùng phía đối với đt CF 
CD // FB' ---> 2 t/g QCD và QFB' đồng dạng ---> QC/QF = CD/FB' (5) 
QP // FB ---> QC/QF = PC/PB (6) 
FB // AC ---> PC/PB = FA/FB = CD/FB (7) 
(5),(6),(7) ---> FB' = FB 
Mà B và B' nằm cùng phía đối với đt CF nên B' trùng B ---> DB đi qua Q hay nói cách khác MP,CF,DB đồng quy tại Q

chà tìm thấy trên mạng :)

29 tháng 12 2023

Các bạn vẽ hình hộ mik nha

29 tháng 12 2023

a: Xét tứ giác AFCD có

AF//CD

DA//CF

Do đó: AFCD là hình bình hành

b,c: Điểm P ở đâu vậy bạn?

16 tháng 4 2020

Giải:

AD // CF ---> AFCD là hbh ---> AF = CD 
DK // BC ---> DKBC là hbh ---> BK = CD 
---> AB-AF = AB-BK hay FB = AK (1) 
AM // FB ---> ^MAK = ^PFB (góc đồng vị) (2) 
MK // PB ---> ^MKA = ^PBF (góc đồng vị) (3) 
(1),(2),(3) ---> 2 t/g MAK và PFB bằng nhau (gcg) ---> MA = PF (4) 
Mà AC // PF ---> MA // PF (5) 
(4),(5) ---> MAFB là hbh ---> MP // AF ---> MP // AB 

b) 
Gọi Q là giao điểm của MP và CF, B' là giao điểm của DQ và AB ---> B và B' nằm cùng phía đối với đt CF 
CD // FB' ---> 2 t/g QCD và QFB' đồng dạng ---> QC/QF = CD/FB' (5) 
QP // FB ---> QC/QF = PC/PB (6) 
FB // AC ---> PC/PB = FA/FB = CD/FB (7) 
(5),(6),(7) ---> FB' = FB 
Mà B và B' nằm cùng phía đối với đt CF nên B' trùng B ---> DB đi qua Q hay nói cách khác MP,CF,DB đồng quy tại Q

16 tháng 4 2020

Hình vẽ bừa nên không chắc ^ ^

A C B D P F M

AD // CF ---> AFCD là hbh ---> AF = CD 
DK // BC ---> DKBC là hbh ---> BK = CD 
=> AB - AF = AB - BK hay FB = AK (1) 
AM // FB --->  \(\widehat{MAK}\)\(\widehat{PFB}\) (góc đồng vị) (2) 
MK // PB ---> \(\widehat{MKA}\)\(\widehat{PBK}\) (góc đồng vị) (3) 
(1),(2),(3) ---> 2 t/g MAK và PFB bằng nhau (g-c-g) ---> MA = PF (4) 
Mà AC // PF ---> MA // PF (5) 
(4),(5) ---> MAFB là hbh ---> MP // AF ---> MP // AB 

b) 
Gọi Q là giao điểm của MP và CF, B' là giao điểm của DQ và AB ---> B và B' nằm cùng phía đối với đt CF 
CD // FB' ---> 2 t/g QCD và QFB' đồng dạng --->  \(\frac{QC}{QF}=\frac{CD}{FB'}\left(5\right)\)(5) 
 \(QP//FB\Rightarrow\frac{QC}{QP}=\frac{PC}{PB}\left(6\right)\)
 \(FB//AC\Rightarrow\frac{PC}{PB}=\frac{FA}{FB}=\frac{CD}{FB}\left(7\right)\)
(5),(6),(7) ---> FB' = FB 
Mà B và B' nằm cùng phía đối với đt CF nên B' trùng B ---> DB đi qua Q hay nói cách khác MP , CF , DB đồng quy tại Q



 

a) Xét tứ giác AFCD có 

AF//CD(AB//CD, F∈AB)

AD//CF(gt)

Do đó: AFCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét tứ giác DCBK có 

DC//BK(DC//AB, K∈AB)

DK//CB(gt)

Do đó: DCBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)