Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: ( hình tự vẽ )
Vì \(AD//BC\left(gt\right)\)
\(\Rightarrow\widehat{A}+\widehat{B}=180^0\)( 2 góc trong cùng phía ) mà\(\widehat{A}-\widehat{B}=20^0\left(gt\right)\)
\(\Rightarrow\hept{\begin{cases}\widehat{A}=100^0\\\widehat{B}=80^0\end{cases}}\)
\(\widehat{D}=2\widehat{B}=2.80^0=160^0\)
Do \(AD//BC\left(gt\right)\)
\(\Rightarrow\widehat{D}+\widehat{C}=180^0\)( 2 góc trong cùng phía )
\(\Rightarrow\widehat{C}=20^0\)
Vậy ...
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
hình tự vẽ nha bạn
a) diện tích tam giác ABCD=1/2.BD.AC=1/2.15.20=150 cm vuông
b) kẻ đường cao BH ,kẻ AK //BD
ta có AK//BD,AB//DK(AB//CD)
=> tứ giác ABDK là hbh
=> BD=AK=15CM VUÔNG,AB=DK
ta có BD vuông góc với AC,BD//AK=>AC vuông góc với AK
tam giác ACK vuông tại A => CK^2=AC^2+AK^2
=> CK^2=20^2+15^2=625
=> CK=CĂN 625=25 CM
=> CD+DK=25CM
MÀ DK=AB=>CD+AB=25CM
S abcd=1/2.(AB+CD).AH
=> 150=1/2.25.AH
=>AH=150:12,5=12CM
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
Vì ABCD là htc nên AB//CD và \(\left\{{}\begin{matrix}\widehat{A}=\widehat{C}=70^0\\\widehat{B}=\widehat{D}=180^0-\widehat{A}=110^0\left(trong.cùng.phía\right)\end{matrix}\right.\)
a/Vì AB//CD(gt)
->góc ABD=góc BDC(so le trong)
-Xét tam giác DAb và tam giác CBD có:
góc DBC =góc DBC(gt) }-->
góc ABD =góc BDC(cmt) }
->ĐPCM
b/Vì tam giác ....đồng dạng với....(cmt)
->AB/BD=BD/BC=AD/BC(cạnh tương ứng tỉ lệ)
Mà đã có AD,AB,BC thì bạn tính nốt ra
c/Vì tam giác ....đồng dạng với....(cmt) với tỉ số đòng dạng AD/BC=3/4
->diện tích DAB/diên tích CBD =(3/4)^2=9/16->diên tích CBD= diện tích DAB:9/16
Mà diện tích DAB = 5cm ^2(gt)
->diên tích CBD=......
\(\widehat{A}=90^o\)