Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành
b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)
Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)
Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)
c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)
a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC
=> MN là đtb của tg DHC (đn)
=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN
MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB
=> ABMN là hình bình hành (dấu hiệu)
b, MN // DC (câu a) DC _|_ AD (gt)
=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM
=> N là trực tâm của tg DAM
=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)
=> DM _|_ BM (TC)
=> ^BMD = 90
c, có CD thì tính đc AB xong tính bth
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
Gọi K là giao điểm của AD và BC
\(\Rightarrow\) Tam giác KDC vuông tại K (do D+C=90) hay tam giác KAB vuông tại K
Gọi F là giao điểm của KM với CD
Áp dụng định lý Thales có:
\(\dfrac{AM}{DF}=\dfrac{KM}{KF}\)
\(\dfrac{KM}{KF}=\dfrac{MB}{FC}\)
\(\Rightarrow\dfrac{AM}{DF}=\dfrac{MB}{FC}\) mà AM=MB \(\Rightarrow DF=FC\)
\(\Rightarrow\) F là trung điểm của DC mà N cũng là tđ của DC
\(\Rightarrow F\equiv M\)
\(\Rightarrow\) K;M;N thẳng hàng
Áp dụng định lý Thales có:
\(\dfrac{KM}{KN}=\dfrac{AM}{DN}\Rightarrow\dfrac{KM}{AM}=\dfrac{KN}{DN}=\dfrac{KN-KM}{DN-AM}=\dfrac{MN}{\dfrac{1}{2}\left(DC-AB\right)}=\dfrac{2MN}{DC-AB}\)
Do đó \(\dfrac{KM}{AM}=\dfrac{2MN}{DC-AB}\)
Do M là tđ của AB mà tam giác KAB vuông tại K \(\Rightarrow KM=\dfrac{1}{2}AB\)
Lại có: \(AM=\dfrac{1}{2}AB\Rightarrow KM=AM\)\(\Rightarrow\dfrac{2MN}{DC-AB}=1\)
\(\Rightarrow MN=\dfrac{DC-AB}{2}\) (đpcm)